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Abstract

During the period of 7/1/2007 - 12/31/2007, we performed the following studies on radar
sensor network:

1. Network-enabled Electronic Warfare (NEW) for Collaborative Automatic Target Recog-
nition (CATR);

2. Foliage clutter modeling using narrowband and UWB radars;

3. A propagation Environment Modeling in Foliage using UWB radars;
4. Target detection in foliage using short-time Fourier transform and UWB radar sensor

networks;

5. Some experimental studies on path loss models for wireless sensor networks based on Xbow
motes,

6. Theoretical studies on distributed connected dominating set construction in random geo-
metric k-Disk graphs for potential application to real sensor networks.

1 NEW-CATR: Network-enabled Electronic Warfare for Collab-
orative Automatic Target Recognition

Network-enabled Electronic Warfare (NEW) is to develop modeling and simulation effort to explore
the advantages and limitations of network-enabled electronic warfare concepts. The advantages of
linking multiple electronic support measures (ESM) and electronic attack (EA) assets to achieve
improved capabilities across a networked battle force have yet to be quantified. In [1], we utilized
radar sensors as ESM and EA assets to demonstrate the advantages of NEW in Collaborative Au-
tonmatic Target Recognition (CATR). Signal (waveform) design for Radar Sensor Networks (RSN)
in NEW is studied theoretically. The conditions for waveform coexistence and the interferences
among waveforms in RSN are analyzed. We applied the NEW to CATR via waveform diversity
combining and propose maximum-likelihood (ML)-ATR algorithms for non-fluctuating targets as
well as fluctuating targets. Simulation results indicate that our NEW-CATR performs much bet-
ter than the single sensor-based ATR algorithm for non-fluctuating targets and fluctuating targets.
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Real world application example, sense-through-foliage target detection using UWB radars, was also
used to validate our algorithms.

2 Foliage Clutter Modeling Using Narrowband and UWB Radars

In [2], we studied foliage clutter modeling on a basis of both pragmatically narrowband and ultra-
wide band (UWB) radars. We proposed that the foliage clutter follows log-logistic model using
maximum likelihood (ML) parameter estimation as well as the root mean square error (RMSE) on
PDF curves between original clutter and statistical model data. In addition to investigating the
log-logistic model, we also compared it with other popular clutter models, namely log-normal and
Weibull. We showed that the log-logistic model not only achieves the smallest standard deviation
(STD) error on estimated model parameters, but also has the best goodness-of-fit and smallest
RMSE.

3 A Propagation Environment Modeling in Foliage Using UWB
Radar

In [3], we proposed that foliage clutter follows log-logistic model using maximum likelihood (ML)
parameter estimation as well as the root mean square error (RMSE) on PDF curves between original
clutter and statistical model data. We not only investigated log-logistic model, but compared it
with other popular clutter models, namely log-normal, Weibull and Nakagami. It showed that the
log-logistic model not only achieves the small- est standard divination (STD) error on estimated
model parameters, but also the best goodness-of-fit and smallest RMSE for both poor and good
clutter signals.

4 Target Detection in Foliage Using Short-Time Fourier Trans-
form and UWB Radar Sensor Networks

In [4], we studied sense-through-foliage target detection. When radar echoes are in good quality,
tile detection of target can be achieved by applying short time Fourier transform (STFT) to the
received UWB radar waveform. We compared our approach in case of no target as well as with
target against the scheme in which 2-D image was created via adding voltages with the appropriate
time offset. Results show that our approach can detect target more easily. When radar echoes are
in poor condition and single radar is unable to carry out the detection, we employed both Radar
Sensor Networks (RSN) and RAKE structure to combine the echoes from different radar ineinbers
and finally detected the target.

5 Experimental Path Loss Models for Wireless Sensor Networks

Energy conservation is critical in Wireless Sensor Networks. Replacing or recharging batteries is
not an option for sensors deployed in hostile environments. Generally communication electronics
in the sensor utilizes most energy. In [5], we studied the effect of changing the transmission power
and baud rate on transmission distance. Using Shannon channel capacity formula and LogDistance
Path Loss Model, transmission distance is shown to be related to transmit power and baud rate.
Extensive empirical readings were taken to confirm the above relation. The path loss exponent got
as a result of data fitting is within the acceptable range for wireless environment. Using the equation
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derived in [5], the distance between neighboring motes and traffic density, it will be possible for
sensors to adjust their transmit power and baud rate so as to use only the required amount of
energy to maintain the wireless link to the neighbor and conserve power.

6 Distributed Connected Dominating Set Construction in Ran-
dom Geometric k-Disk Graphs

In [6], we studied the problem of minimum connected dominating set in random geometric k-disk
graphs. This research is motivated by the problem of virtual backbone construction in wireless ad
hoc and sensor networks, where the coverage area of nodes are disks with different radii. We derived
the size relationship of any maximal independent set and minimum connected dominating set in
geometric k-disk graphs, and applied it to analyze the performances of two distributed connected
dominating set algorithms we proposed in [6]. These algorithms have bounded performance ratio
and low communication overhead, and therefore have the potential to be applied in real ad hoc and
sensor networks
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Abstract

Network-enabled Electronic Warfare (NEW) is to develop modeling and simulation effort

to explore the advantages and limitations of network-enabled electronic warfare concepts. The

advantages of linking multiple electronic support measures (ESM) and electronic attack (EA)

assets to achieve improved capabilities across a networked battle force have yet to be quantified.

In this paper, we utilize radar sensors as ESM and EA assets to demonstrate the advantages

of NEW in Collaborative Automatic Target Recognition (CATR). Signal (waveform) design for

Radar Sensor Networks (RSN) in NEW is studied theoretically. The conditions for waveform

coexistence and the interferences among waveforms in RSN are analyzed. We apply the NEW

to CATR via waveform diversity combining and propose maximum-likelihood (ML)-ATR al-

gorithms for non-fluctuating targets as well as fluctuating targets. Simulation results indicate

that our NEW-CATR performs much better than the single sensor-based ATR algorithm for

non-fluctuating targets and fluctuating targets.

Index Terms : Network-enabled electronic warfare, radar sensor networks, waveform diversity,

collaborative automatic target recognition, maximum-likelihood, interferences.
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1 Introduction and Motivation

In current and future military operational environments such as Global War on Terrorism (GWOT)

and Maritime Domain Awareness (MDA), war fighters require technology that can support their

information needs in manner that is independent of their location and consistent with their level of

command or responsibility and operational situation. To support this need, the U.S. Department of

Defense (DoD) has developed the concept of Network Centric Warfare (NCW), defined as "military

operations that exploit state-of-the-art information and networking technology to integrate widely

dispersed human decision makers, situational and targeting sensors, and forces and weapons into

a highly adaptive, comprehensive system to achieve unprecedented mission effectiveness" [1]. The

goal of electronic warfare is to control the electromagnetic (EM) spectrum by disrupting or denying

enemy use of the spectrum while ensuring its use by friendly forces [2].

Network-enabled Electronic Warfare (NEW) is to develop modeling and simulation effort to

explore the advantages and limitations of network-enabled electronic warfare concepts. The advan-

tages of linking multiple electronic support measures (ESM) and electronic attack (EA) assets to

achieve improved capabilities across a networked battle force have yet to be quantified [2]. In this

paper, we utilize radar sensors as ESM and EA assets to demonstrate the advantages of NEW in

Collaborative Automatic Target Recognition (CATR). The network of radar sensors should operate

with multiple goals managed by an intelligent platform network that can manage the dynamics of

each radar to meet the common goals of the platform, rather than each radar operates as an inde-

pendent system. Therefore, it is significant to perform signal design and processing and networking

cooperatively within and between platforms of radar sensors and their communication modules.

This need is also testified by the recent solicitation from the U.S. Office of Naval Research [2][3].

For example, in [3], it is stated that "Algorithms are sought for fused, and/or, coherent cross-

platform Radio Frequency (RF) sensing. The focus of this effort is to improve surveillance utilizing
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a network, not fusion of disparate sensor products. The algorithms should be capable of utilizing

RF returns from multiple aspects in a time-coordinated sensor network." In this paper, we study

waveform design and diversity algorithms for radar sensor networks. Waveform diversity is the

technology that allows one or more sensors on board a platform to automatically change operating

parameters, e.g., frequency, gain pattern, and pulse repetition frequency (PRF), to meet the vary-

ing environments. It has long been recognized that judicious use of properly designed waveforms,

coupled with advanced receiver strategies, is fundamental to fully utilizing the capacity of the elec-

tromagnetic spectrum. However, it is the relatively recent advances in hardware technology that

are enabling a much wider range of design freedoms to be explored. As a result, there are emerging

and compelling changes in system requirements such as more efficient spectrum usage, higher sensi-

tivities, greater information content, improved robustness to errors, reduced interference enissions,

etc. The combination of these changes is fueling a worldwide interest in the subject of waveform

design and the use of waveform diversity techniques.

In the existing works on waveform design and selection, Fitzgerald [8] demonstrated the in-

appropriateness of selection of waveforms based on measurement quality alone: the interaction

between the measurement and the track can be indirect, but must be accounted for. Bell [6]

used information theory to design radar waveforms for the measurement of extended radar targets

exhibiting resonance phenomena. In [5], the singularity expansion method was used to design dis-

criminant waveforms such as K-pulse, E-pulse, and S-pulse. Sowelam and Tewfik [24] developed a

signal selection strategy for radar target classification, and a sequential classification procedure was

proposed to minimize the average number of necessary signal transmissions. Intelligent waveform

selection was studied in [4][12], but the effect of Doppler shift was not considered. In [16], tOne-

frequency-based generalized chirps were used as waveform for detection and estimation. In [15], the

performance of constant frequency (CF) and linear frequency modulated (LFM) waveform fusion
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from the standpoint of the whole system was studied, but the effect of clutter was not considered.

In [23], CF and LFM waveforms were studied for a sonar system, but it was assumed that the sensor

is non-intelligent (i.e., waveform can't be selected adaptively). All the above studies and design

methods focused oi the waveform design or selection for a single active radar or sensor. In [21],

cross-correlation properties of two radars were briefly mentioned and the binary coded pulses using

simulated annealing [7] are highlighted. However, the cross-correlation of two binary sequences

such as binary coded pulses (e.g. Barker sequence) is much easier to study than that of two analog

radar waveforms. In this paper, we focus on the waveform diversity and design for radar sensor

networks using the constant frequency (CF) pulse waveform. Relative to previous work, this paper

has the following novelties:

1. A networked scenario of radar sensors is considered instead of a single radar system.

2. We study waveform design and diversity for radar sensors networks. In Space-Time Adaptive

Processing (STAP) [18], the waveform (pulse) design is essentially for a single radar sensor.

The pulse is sent repeatedly at different time and echo is received and processed by the antenna

array, and no interferences among pulses if the pulse repetition interval is large enough.

3. We investigate collaborative automatic target recognition using radar sensor networks and

compare it against single radar system in CATR.

4. Simulations are performed for nonfluctuating targets as well as fluctuating targets, and a real

world application example, sense-through-foliage target detection, is presented.

The rest of this paper is organized as follows. In Section 2, we study the coexistence of radar

waveforms. In Section 3, we analyze the interferences among radar waveforms. In Section 4, we

propose a RAKE structure for waveform diversity combining and present maximum-likelihood (ML)

algorithms for CATR. In Section 5, we provide simulation results on ML-CATR. In Section 6, we
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conclude this paper and discuss future research.

2 Co-existence of Radar Waveforms

In radar sensor networks (RSN), radar sensors interfere with each other and tile signal-to-interference-

ratio may be very low if the waveforms are not properly designed. In this paper, we introduce

orthogonality as one criterion for waveform design in RSN to make radars coexistence. In addition,

since the radar channel is narrow-band, we will also consider the bandwidth constraint.

In our radar sensor networks, we choose the CF pulse waveform, which can be defined as

x(t) = I exp(j27rO3t) - T/2 < t < T/2 (1)
T

where /3 is the RF carrier frequency in radians per second. In radar, ambiguity function (AF) is an

analytical tool for waveform design and analysis, which succinctly characterizes the behavior of a

waveform paired with its matched filter. The ambiguity function is useful for examining resolution,

side lobe behavior, and ambiguities in both range and Doppler for a given waveform [18]. For a

single radar, the matched filter for waveform x(t) is x*(-t), and the ambiguity function of CF pulse

wavcform is

T/2
A(r, FD) = T-/2+- x(t) exp (j27rFDs)x*(t - -)dt

Esin[rFD(T - I)] - T < 7 < T (2)
T7rFD _

We can simplify this AF in the following three special cases:

1. When T = 0,

A(0,FD) E sin(7rFDT) .
Tr (FD) (3)

2. when FD = 0,

A(T,0)- E(T-ITj ) ; (4)
T
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3. and when T = FD = 0,

A(0, 0) = E (5)

Note that the above ambiguity is for one radar only (no coexisting radar).

For radar sensor networks, the waveforms from different radars interfere with each other. We

choose the waveform for radar i as

xi(t) = exp[j27r(o + &J)t] - T/2 < t < T/2 (6)

which means that there is a frequency shift 6i for radar i. To minimize the interference from one

waveform to another, optimal values for 6, should be determined to make the waveforms orthogonal

to each other, i.e., let the cross-correlation between xi(t) and x,(t) be 0,

I T/2. T /2
i(t)x* (t)dt = E exp[j2,r(O + Ji)t] exp[-j27r(,3 + 6,,)t]dt (7)

-T/2 -T/2

= Esinc[7r(6i - J,,)T] (8)

If we choose

ji = (9)
T

where i is a dummy index, (8) can be written as

I /2 { i=n

xi(t)x* (t)dt = (10)
-T/2 

n

10 i#: n

Therefore choosing Ji = T in (6) yields orthogonal waveforms, i.e., the waveforms can coexist if the

carrier spacing is a multiple of 1/T between two radar waveforms. In other words, orthogonality

amongst carriers can be achieved by separating the carriers by a multiple of the inverse of waveform

pulse duration. With this design, all the orthogonal waveforms can work simultaneously. However,

there may exist time delay and Doppler shift ambiguity which may interfere with other waveforms

in RSN.
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3 Interferences of Waveforms In Radar Sensor Networks

3.1 RSN with Two Radar Sensors

We are interested in analyzing the interference from one radar to another if there exist time delay

and Doppler shift. For a simple case where there are two radar sensors (i and n), the ambiguity

function of radar i (considering the interference from radar n) is

Aj(t, L, t,FD ,,) = f [xi(t) exp(j27rFDit) + x,(t -t t) exp(j27rFD.t)]x*(t -t)dt (11)

I-T/2+max(ti,t,) xn(t - t,) exp(j27rFD, t)x*(t - ti)dt
f T/2+max(tj,t)

+ xi(t) exp (j27rFD,t)x*(t - t)dt (12)
fT/2+ti

jT/2+max(t,t) x,(t - tn) exp(j27rFD, t)x* (t - ti)dt

Esin[TrFD,(T - Itt)] (13)
+ T7rFD(

To make the analysis easier, it is generally assumed that the radar sensor platform has access to the

Global Positioning Service (GPS) and the Inertial Navigation Unit (INU) timing and navigation

data [3]. In this paper, we assume that the radar sensors are synchronized and that t = t, = T.

Then (13) can be simplified as

Ai(T, FD,, FD,) z IEsinc[7r(n - i + FD T)]I + E Tsin[rFD(T-7- 1)] (14)
TrFD,

We have the following three special cases:

1. If FD, = FD,, = 0, and 6i and 6n follow (9), (14) becomes

Ai (7,0,0) : E(T - ITI)] (15)
T

2. If r = 0, (14) becomes

Ai(O, FD,,FD,,) ; lEsinc[r(n - i + FD,T)]f + Esin(7rFDiT) (16)

T7rFDj
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3. If FD, = FD,, = 0, T = 0, and 6i and 5n follow (9), (14) becomes

Ai(0, 0, 0) E (17)

3.2 RSN with M Radar Sensors

Our analysis on an RSN with two radar sensors can be extended to the case of M radars. Assuming

that the time delay T for each radar is the same, then the ambiguity function of radar 1 (considering

interferences from all the other M - 1 radars with CF pulse waveforms) can be expressed as
M Esin[7rFD(T- IT)] (18)

A (T, FD 1 , ... , FDM ) [ IEsinc[r(i - 1 + FD1 T)] + TrFD,

i=2

Similarly, we have the following three special cases:

1. FD I = FD2 = ... = FDM = 0, and the frequency shift 6i in (6) for each radar follows (9),

then (18) becomes

A,(T,0,O0' 0)~ E(T - JIr)] (19)
T

Comparing it against (4), we notice that a radar may exist that can get the same signal

strength as that of the single radar in a single radar system (no coexisting radar) when the

Doppler shift is 0.

2. If T = 0, then (18) becomes
M Esin(7rFDIT) (20)

A, (0, FD,, FD2 ,". , FDM) E I Esinc[7r(i - 1 + FD, T)]I + T7rFD1
i=2

Comparing to (3), a radar in RSN has higher interferences when unknown Doppler shifts

exist.

3. FD1 = FD 2 .... FDM = 0, T = 0, and 6i in (6) follows (9), then (18) becomes

AI(0,0,0,- 0) E (21)



4 NEW for Collaborative Automatic Target Recognition

In NEW, the radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireless backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggests a hierarchical organization

of radar sensor networks with the lowest level in the hierarchy being a cluster. As argued in

[9] [10] [13] [17], in addition to helping with scalability and robustness, aggregating sensor nodes

into clusters has additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for the

nodes in the attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide its waveform parameters such as 6i to its clusterhead radar, and

the clusterhead radar can combine the waveforms from its cluster members.

In RSN with M radars, the received signal for clusterhead (assume it's radar 1) is

M

rl(u, t) = ( (u)xj(t - ti) exp(j27rFDit) + n(u, t) (22)
i= 1

where c(u) stands for radar cross section (RCS), which can be modeled using non-zero constants

for non-fluctuating targets and four Swerling target models for fluctuating targets [18]; FD, is the

Doppler shift of the target relative to waveform i; tj is the delay of waveform i, and n(u, t) is the
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additive white Gaussian noise (AWGN). In this paper, we propose a RAKE structure for waveform

diversity combining, as illustrated by Fig. 1. This figure summarizes how the clusterhead works.

The received signal r, (u, t) consists of echos triggered by the waveforms from each radar sensor,

and x*(t - ti) is used to retrieve the amplified waveform from radar i (amplified by the target

RCS) based on the orthogonal property presented in Sections 2 and 3, and then this information

is time-averaged for diversity combining.

According to this structure, the received r, (u, t) is processed by a bank of matched filters, then

the output of branch 1 (after integration) is

Z (u; ti,, tm, FD," ,FDM)

IT/2
= f ri(u, t)x*(t - tl)ds (23)

-T/2JT/2 M
= f _E ai[(u)xi(t - ti) exp(j27rFD, t) + n(u, t)]x* (t - tl)dt (24)

T/2 i=1

Assuning tj = t2 tm = , then based on (18),

M

Zl(u;, FD,,... ,FDNI) 1Z a (u)Esinc[r(i- 1 + FD, T)]
i=2

+ a(u)E sin[7rFD, (T - Irj)] + n(u,-) (25)+ ~T7rFD, +nu )(5

Similarly, we can get the output for any branch m (m = 1,2,... M)

M

Zn,(u; r, FD1 ,'" ,FDAI) a3 c (u)Esinc[7r(i - m + FDiT)]
i=1l,iT#m

a(u)E sin[rFDm (T - I7)] + n(u T) (26)
+ r7TrFD_

Therefore Zm (u; T, FDj, • , FDM) consists of three parts, namely signal (reflected signal from radar
(u)E sin[7rP' ..., (T-171)]

m waveform): (~ l[rIrDrn (T-,TI)l interferences from other waveforms: E m (u)Esnc[r(i -

rn + FDjT)], and noise: n(u, T).

We can also have the following three special cases for IZm(u; 7, FD,,.. , FDM)I:
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1. When FD, ... FDm = 0,

Z,,(u;r, 0,0,. ,0) Ea(u)(T-I7)] +n(u,T) (27)
T

which means that if there is no Doppler mismatch, there is no interference from other wave-

forms.

2. If T 0, (26) becomes

Z,,(u; 0, FD1," ,FDm)

M o(u)E sin[7rFD,,T]

V a o(u)Esinc[7r(i - m + FDiT)] + + n(u) (28)
j=j,j54?m T7rFD_

3. If r O, and FD, .... FDM = O, (26) becomes

Zm (u; 0, 0, 0, ... , 0) z: Ea(u) + n(u) (29)

Doppler mismatch happens quite often in target search where target velocity is not yet known.

However, in target recognition, generally high-resolution measurements of targets in range

(T = 0) and Doppler are available, therefore (29) will be used for CATR.

How to combine all the Zm's (m = 1, 2, ... , M) is very similar to the diversity combining in

wireless communications to combat channel fading, and the combination schemes may be different

for different applications. In this paper, we are interested in applying the RSN waveform diversity

to CATR., e.g., recognition that the echo on a radar display is that of an aircraft, ship, motor

vehicle, bird, person, rain, chaff, clear-air turbulence, land clutter, sea clutter, bare mountains,

forested areas, meteors, aurora, ionized media, or other natural phenomena via collaborations

among different radars. Early radars were "blob" detectors in that they detected the presence of a

target and gave its location in range and angle, and radar began to be more than a blob detector and

could provide recognition of one type of target from another [21]. It is known that small changes in
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the aspect angle of complex (multiple scatter) targets can cause major changes in the radar cross

section (RCS). This has been considered in the past as a means of target recognition, and is called

fluctuation of radar cross section with aspect angle, but it has not had much success [21]. In [19],

a paramnetric filtering approach was proposed for target detection using airborne radar. In [14],

knowledge-based sensor networks were applied to threat assessment. In this paper, we propose

maximum likelihood collaborative automatic target recognition (ML-CATR) algorithms for RSN.

We study non-fluctuating targets as well as fluctuating targets.

4.1 ML-CATR for Non-fluctuating Targets

In some sources, the non-fluctuating target is identified as a "Swerling 0" or "Swerling 5" model [22].

For non-fluctuating targets, the RCS am(U) is just a constant a for a given target. In (29),

n(u,T) is a zero-mean Gaussian random variable for a given T, so IZm(u; 0,0,.. ,0)1 follows a

Rician distribution because signal Ea(u) is a positive constant Ea for non-fluctuating targets. Let

y... IZ,,,(u; 0, 0,... ,0)1, then the probability density function (pdf) of Ym is

f( y) (y 2 + 0A2 )] 2Ay, (30)
(y. exp[-. o21 o(2)(0

where

A = Ea, (31)

a2 is the noise power (with I and Q sub-channel power a 2/2), and Io(.) is the zero-order modified

Bessel function of the first kind. Let y = [Y1, Y2,"" , ym], then the pdf of y is

M

f(Y) H f(Ym) (32)
m=1

Our CATR is a multiple-category hypothesis testing problem, i.e., to decide a target category

(e.g. aircraft, ship, motor vehicle, bird, etc.) based on rl(u,t). Assume there are totally N

categories and a category n target has RCS ci,, therefore the ML-CATR algorithm to decide a
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target category C can be expressed as,

C = argmax.-lf(yIA = Ea.) (33)

N M 2 ym (y2 + E 2 a2)] 2Ea (y.4= argmax_- 1 H - 7 - exp- 2 I( 2 (34)
m=1

4.2 ML-CATR for Fluctuating Targets

Fluctuating target modeling is more realistic in which the target RCS is drawn from either the

Rayleigh or chi-square of degree four pdf. The Rayleigh model describes the behavior of a complex

target consisting of many scatters, none of which is dominant. The fourth-degree chi-square models

targets having many scatters of similar strength with one dominant scatter. Based on different

combinations of pdf and decorrelation characteristics (scan-to-scan or pulse-to-pulse decorrelation),

four Swerling models are used [18]. In this paper, we focus on the "Swerling 2" model which is

a Rayleigh distribution with pulse-to-pulse decorrelation. The pulse-to-pulse decorrelation implies

that each individual pulse results in an independent value for RCS a.

For the Swerling 2 model, the RCS Ia(u) follows a Rayleigh distribution and its I and Q

subchannels follow zero-mean Gaussian distributions with a variance Y2 . Assume

oa(u) = al(u) + jaQ(U) (35)

and n(u) = ni(u) + jnQ(u) follows a zero-mean complex Gaussian distribution with a variance

0r2 for the I and Q subchannels. Therefore according to (29), Zm(u; 0, 0, 0,'.. , 0) is a zero-mean

Gaussian random variable with a variance E 2 y2 + O2 for the I and Q subchannels, which means

YI = IZm(u; 0, 0,-.- ,0)1 follows a Rayleigh distribution with a parameter V/E 2y, 2 + a2 ,

f exp(- y2 a2 ) (36)fY)-E22+ '2 E2 ̂ Y2 +Or)

he mean value of y,, is V/ _+ 3 , and the variance is (4-7)(E2y2+Or) . The variance of signal is

2 a2
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Let y = [y1,y2 ,YM], then the pdf of y is

M

f(Y) = H f(Ym) (37)
m=1

Assume there are totally N categories and a category n target has a RCS an(u) (with a variance

2),so the ML-ATR algorithm to decide a target category C can be expressed as,

C = argmax= 1f(yI-Y=-Yn) (38)

M 2
= arg max N 1  E 2 m xp(- YE2 2 2) (39)

m= 1 
^

5 Simulations and Real World Application Example

5.1 Computer Simulations

Radar sensor networks will be required to detect a broad range of target classes. Too often, the

characteristics of objects that are not of interest (e.g., bird) are similar to those of threat objects

(e.g., missile). Therefore, new techniques to discriminate threat against undesired detections (e.g.

birds, etc.) are needed. We applied our ML-CATR to this important application, to recognize a

target from many target classes. We assume that the domain of target classes is known a priori (N

in Sections 4.1 and 4.2), and that the RSN is confined to work only on the known domain.

For non-fluctuating target recognition, our targets have 5 classes with different RCS values,

which are summarized in Table 1 [21]. We applied the ML-CATR algorithms in Section 4.1 (for

the non-fluctuating target case) to classify an unknown target as one of these 5 target classes.

At each average SNR value, we ran Monte-Carlo simulations for 105 times for each target. The

average SNR value is based on the average power from all targets (signal variance), so the actual

SNRs for bird and missile are much lower than the average SNR value. For example, at the

average SNR=16dB, the bird target SNR=-33.1646dB, and the missile target SNR=0.8149dB; and
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at average SNR=20dB, the bird target SNR=-29.1646dB, and the missile target SNR=4.8149dB.

In Fig. 2(a)(b), we plotted the probability of the ATR error in bird and missile recognition when

they are assumed as non-fluctuating targets. These figures indicate that a single radar system can't

perform well in both recognitions, whose probability of the ATR error is above 10%, which can't

be used for real-world ATR. However, the 5-radar RSN and 10-radar RSN can maintain very low

ATR errors. In Fig. 2(c), we plotted the average probability of the ATR error for all 5 targets

recognition. Since the other 3 targets (different aircrafts) have much higher SNRs, their ATR error

is lower, which makes the average probability of ATR error lower.

For fluctuating target recognition, we assume the fluctuating targets follow the "Swerling 2"

model (Rayleigh distribution with pulse-to-pulse decorrelation), and assume the RCS value listed in

Table 1 to be the standard deviation (std) -y, of RCS a,,(u) for target n. We applied the ML-CATR

algorithm in Section 4.2 (for the fluctuating target case) for target recognition within the 5 targets

domain. Similarly we ran Monte-Carlo simulations at each SNR value. In Fig. 3(a)(b)(c), we

plotted the ATR performance for fluctuating targets and compared the performances of a single-

radar system, a 5-radar RSN, and a 10-radar RSN. Observe that the two RSNs perform much better

than the single radar system. The ATR error for the missile is higher than that of bird because

the Rayleigh distribution of the missile has a lot of overlap with its neighbor targets (aircrafts).

Comparing Fig. 2(a)(b)(c) to Fig. 3(a)(b)(c), it is clear that higher SNRs are needed for the

fluctuating target recognition comparing to the non-fluctuating target recognition. According to

Skohlik [21], the radar performance with a probability of recognition error (p,) less than 10% is

good enough. Our RSN with waveform-diversity can achieve a probability of ATR error much less

than 10% for each target ATR as well as the average ATR for all targets. However, the single

radar system has a probability of ATR error much higher than 10%. Fig. 3(c) also tells us that the

average probability of ATR error of a single-radar system is impossible to be less than 10% even at
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an extremely high SNR. Our RSN with waveform diversity is very promising for real-world ATR.

5.2 Real World Application Example

We verified our approach based on a real world application example, sense-through-foliage target

detection from U.S. Air Force Research Laboratory. The target is a trihedral reflector (as shown

in Fig. 4) in a forest, we plot two collections using UWB radars in Figs. 5a and 5b. Fig. 5a has

no target on range, and Fig. 5b has target at samples around 13,900. We plot the echo differences

between Figs. 5a and 5b in Fig. 5c. However, it is impossible to identify whether there is any

target and where there is target based on Fig. 5c, which means single radar doesn't work even

in ideal case. Since significant pulse-to-pulse variability exists in the echos, this motivate us to

explore the spatial and time diversity using radar sensor networks approach. The echos, i.e., RF

responses by the pulse of each cluster-member radar, are combined by the clusterhead using the

RAKE structure in Fig. 1.

We ran simulations for an RSN with 30 radars, and plot the power of AC values in Figs. 6a

and 6b for the two cases (with target and without target) respectively. Observe that in Fig. 6b,

the power of AC values (around sample 13,900) where the target is located is non-fluctuating

(monotonically increase then decrease). Although some other samples also have very high AC

power values, it is very clear that they are quite fluctuating and the power of AC values behaves

like random noise because generally the clutter has Gaussian distribution in the frequency domain.

6 Conclusions and Future Works

We have studied the constant frequency pulse waveform design and diversity in radar sensor net-

works. We showed that the waveforms can coexist if the carrier frequency spacing is a multiple

of lT between two radar waveforms. We made analysis on interferences among waveforms in
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RSN and proposed a RAKE structure for waveform diversity combining in RSN. As an application

example, we applied the waveform design and diversity to CATR in RSN and proposed ML-CATR

algorithms for non-fluctuating targets as well as fluctuating targets. Simulation results show that

al RSN using our waveform diversity-based ML-ATR algorithms performs much better than a sin-

gle radar system for non-fluctuating targets and fluctuating targets recognition. We also validated

our RSN approach via a real-world sense-through-foliage application example.

In our future research, we will investigate the CATR when multiple targets coexist in RSN, and

the number of targets are time-varying. In this paper, we used spatial diversity combining. For

multi-target ATR, we will further investigate spatial-temporal-frequency combining for waveforin

diversity in RSN.
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Table 1: RCS values at microwave frequency for 5 targets.

Index n Target J RCS

1 Bird 0.01
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Figure 1: Waveform diversity combining by clusterhead in RSN.
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Figure 2: Probability of ATR error for non-fluctuating targets at different average SNR (dB) values.
(a) bird, (b) missile, (c) the average probability of ATR error for 5 targets.
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Figure 3: Probability of ATR error for fluctuating targets at different average SNR (dB) values.
(a) bird, (b) missile, (c) the average probability of ATR error for 5 targets.
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Figure 4: The target (a trihedral reflector) is shown on the stand at 300 feet from the measurement

lift.
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Abstract-In this paper, we study foliage clutter modeling the foliage clutter in a slightly different manner, therefore
on a basis of both pragmatically narrowband and ultra-wide provide differences in multipath.
band (UWB) radars. We propose that the foliage clutter follows In our present work, we investigate the use of the log-
log-logistic model using maximum likelihood (ML) parameter
estimation as well as the root mean square error (RMSE) on logistic distribution (LLD) to model foliage clutter and il-
PDF curves between original clutter and statistical model data. In lustrate the goodness-of-fit to real UWB clutter data. Addi-
addition to investigating the log-logistic model, we also compare tionally, we compare the goodness-of-fit with existing popular
it with other popular clutter models, namely log-normal and models namely log-normal, Weibull by means of maximum
Weibull. We show that the log-logistic model not only achieves likelihood estimation (MLE) and the root mean square error
the smallest standard deviation (STD) error on estimated model
parameters, but also has the best goodness-of-fit and smallest (RMSE). The result shows that log-logistic model provides the
RMSE. best fit to the foliage clutter for both narrowband and UWB

signals.
I. INTRODUCTION AND MOTIVATION The rest of this paper is organized as follows. In Section

Clutter is a term used to define all unwanted echoes from II we discuss the properties and applicability of log-logistic
natural environment [1]. The nature of clutter may necessarily as a statistical model for foliage clutter. The measurement
vary on a basis of different applications and radar parameters. and collection of clutter data we used in this paper are
Most previous studies have investigated land clutter and sea summarized in Section I1. Section IV discribes the estimation
clutter. For example, log-normal and Weibull distributions of model parameters and the goodness-of-fit. Finally, section
have been proven to be better suited for the clutter than V concludes this paper and describes some future work.
Rayleigh and Rician models in high resolution radar systems. II. LOG-LOGISTIC MODEL
As far as clutter modeling in forest is concerned, it is still
of great interest and is likely to take some time to reach any Lolgis t has been applicntly in hroloialagreement. A team of researchers from MIT [2] and U. S. analysis. In spite of its intensive application in precipitation

and stream-flow data, the LLD [7] statistical model, to the bestArmy Research Laboratory (ARL) [3] [4] have measured ultra- of our knowledge, has never been applied to radar foliage
wideband (UWB) backscatter signals in foliage for different clutter. The motivation for considering log-logistic model is
polarizations and frequency ranges. The measurements showthlaizatithefoliageuenr anis s. impulsively c re s ho based on its higher kurtosis and longer tails, as well as itsth a t th e fo lia g e c lu tte r is im p u lsiv e ly c o rru p te d w ith m u lti- s a e s m l r t o l g n r a n e b l i t i u i n . T upath fading, which leads to inaccuracy of the K-distributions shape similarity to log-ndrmal and Weibull distributions. Thus
dpationg, [5].h Teair Fore inacerac of Sce-dientrifiR sc it is intended to be employed to estimate how well the modeldescription [5]. The Air Force Office of Scientific Researchstatistics.
(AFOSR) has conducted field measurement experiment con- The PDF foListributon istics.
cerning foliage penetration radar since 2004 and noted that The PDF for LLD distribution is given by
metallic targets may be more easily identified with wideband e
than with narrowband signals [6]. f , x> 0, a > 0 (1)

In this investigation, we will apply both narrowband and ax(1 + e

ultra-wide band (UWB) radar to model the foliage clutter, where p is scale parameter and a is shape parameter.
as we believe that foliage clutter is composed of intervening The mean of the the LLD is
materials that are electromagnetically dispersive, which con- E{x} = el'F(1 + o)f(1 - o,) (2)
tributes to the strong frequency dependence of foliage, and
thus a narrowband-wideband study would assist with the better whereas the median is
understanding of statistic property of the clutter. M{x} = e" (3)

Narrowband signals have been tried at 200, 400 and 600
megahertz respectively, while UWB radar emissions are at a
relatively low frequency-typically between 100 MHz and 3 Var{x} = e2,,{F(j + 2a)F(1 - 2a) - [F(1 + (T)F(1 - )]}
GHz. Each frequency component in a radar signal will sense (4)



while the moment of order k is

E{( a} = cre 1B(ka, 1 - ka), k < - (5)

where
(7n,T) x X)n- 0.5B(m,,) z -l( -z) 1-dx (6) -

The PDFs for selected [t's and a's for the LLD distribution -0.5

are illustrated in Fig. 1. We will apply LLD along with -'
lognormal and Weibull models to analyze the clutter data.
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III. EXPERIMENT SETUP AND DATA COLLECTION

The foliage penetration measurement effort began in August Fig. 3. Signal at 200 megahertz (a) transmitted pulse (b) received pulse

2005 and continued through December 2005. Working in
August through the fall of 2005, the foliage measured included
late summer foliage and fall and early winter foliage. Late x1os
summer foliage, because of the limited rainfall, involved
foliage with decreased water content. Late fall and winter N I 1"

measurements involved largely defoliated but dense forest.
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Fig. 2. This figure shows the lift with the experiment. The antennas are at E 30o

the far end of the lift from the viewer under the roof that was built to shield 2000

the equipment from the elements. This picture was taken in September with
the foliage largely still present. The cables coming from the lift are a ground o0
cable to an earth ground and one of 4 tethers used in windy conditions. 00 2000 40oW GWo oMM 1oo 400 IS=o o
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The radar experiment was constructed on a seven-ton man (b)
lift, which had a total lifting capacity of 450 kg. The limit
of the lifting capacity was reached during the experiment as Fig. 4. Signal at 400 megahertz (a) transmitted pulse (b) received pulse
essentially the entire measuring apparatus was placed on the



lift (as shown in Fig. 2). The principle pieces of equipment
t5 secured on the lift are: dual antenna mounting stand; two

1 antennas; 200MHz, 1Kw Amplifier, power supply, pre-amp;
E 400MHz, 1Kw Amplifier, power supply, pre-amp; 600MHz,

05 1Kw Amplifier, power supply, pre-amp; Tektronix model 7704
0B oscilloscope; rack system; IBM laptop; HP signal Generator;

Custom RF switch and power supply and weather shield (small
hut). Particularly for UWB signal, a Barth pulse source (BarthE
Electronics, Inc. model 732 GL) was used. The pulse generator
uses a coaxial reed switch to discharge a charge line for a very

- 2000 4000 6000 8000 10000 12000 14000 16000 fast rise time pulse outputs. The model 732 pulse generator
sample index provides pulses of less than 50 picoseconds (ps) rise time,

(a) with amplitude from 150 V to greater than 2 KV into any

7O load impedance through a 50 ohm coaxial line. The generator
6000 is capable of producing pulses with a minimum width of 750
5000 ps and a maximum of 1 microsecond. This output pulse width

is determined by charge line length for rectangular pulses, or
S4000 by capacitors for li/e decay pulses.

3000 The system was pointing at the specified 250 feet one way

2000 distance. For the data we used in this paper, each sample is
spaced at 50 picoseconds interval, and 16,000 samples were

lowo collected for each collection for a total time duration of 0.8
00 2000 4000 6000 80 0 10000 12000 14000 16000 microseconds. 35 pulses reflected clutter signal were obtained

sample index for each collection at the same frequency and the same site,
(b) but different time.

The transmitted pulses and received signal are shown in
Sig. 5. Signal at 600 megahertz (a) transmitted pulse (b) received pulse Fig. 3,- 6. We averaged the 35 pulses in order to remove

the random noise from the clutter. It is obvious to see the
presence of multiple scattering from received signals, UWB

,10' ____in particular.

IV. STATISTICAL ANALYSIS OF THE FOLIAGE CLUTTER

0) 00.
. . ................. DATA

A. Maximum Likelihood Estimation

V; Using the collected clutter data mentioned above, we apply
Maximum Likelihood Estimation (MLE) approach to estimate

-1 the parameters of the log-logistic, log-normal and Weibull
_2_ models. MLE is often used when the sample data are known

2000 4000 6000 6000 10000 12000 14000 16000
sample index and parameters of the underlying probability distribution are

(a) to be estimated [8] [9]. It is generalized as follows:
310e Let Y1, Y2, ' * ", YN be N independent samples drawn from a

random variable Y with m parameters 01, 02, -", 0m, where
3" Oi e 0, then the likelihood function expressed as a function of

2,5 0 conditional on Y is

2 N

E, LN(YIO) =r fY 0(Yk10,,02," (7)

o 5 LThe maximum likelihood estimate of 01, 02, 0., 0, is the set
0 4- 6000-0201of values i1, 92, ', 0m that maximize the likelihood functiona 2000 4000 6000 8000 10000 12000 14000 16&M

sample index LN(Y10).

(b) As the logarithmic function is monotonically increas-
ing, maximizing LN(Y10) is equivalent to maximizing

Fig. 6. Signal at 600 megahertz (a) transmitted pulse (b) received pulse ln(LN(Yj0)). Hence, it can be shown that a necessary but not
sufficient condition to obtain the ML estimate 9 is to solve the
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TABLE I

I =Radar Data ESTIMATED PARAMETERS AND STD ERROR
7t-Log-Logistic

- - - Lognormal

S Weibull PDF Log-Logistic Log-normal Weibull

5/ = 6.95521 / = 6.95754 d = 1816.39
200MHz =0.619019 =1.12545 b= 0.95900

ED = 0.00848 E4 = 0.00890 t, = 15.8698
35 

= 0.00409 ea = 0.00629 6b = 0.00560

A = 7.138 A = 7.03467 a = 1970.62
2 400MHz & 0.67077 & = 1.22477 b = 1.06597

= 0.00922 c,, = 0.00968 Ea = 15.38150
1 or = 0.00441 Ca = 0.00685 Eb = 0.00671

0 2000 4000 000 8000 10000 12000 14000 = 6.26835 A 6.24074 a 1164.35
Cluttero Aplitude at 200mHz 60MHz = 0.98842 & = 1.68841 b = 0.67637

= 0.01334 E4 = 0.01383 c, = 14.3965
(a) = 0.00637 E, = 0.00944 Eb = 0.00414

x10 A=7.76868 /d = 7.79566 = 4901.07

ZRadar Data UWB & = 0.78651 & = 1.41771 b = 0.74322
7 - Log-Logistic C" = 0.01078 c,, = 0.01121 E = 55.3011

--- Lognomal = 0.00522 E, = 0.00793 Eb = 0.00434
I- - Weibull

4 likelihood equation
3

2 l ln(LN(YIO)) = 0 (8)

1 Using the collected clutter radar mentioned above, we apply
0 1000 2000 3000 4000 5000 6000 7000 8000 MLE to obtain 2 and 6 for log-logistic, / and & for the log-

Clutter Amplitude400mHz normal, & and b for the Weibull. The results are shown in

(b) Table I. We also explore the standard deviation (STD) error
2 ' of each parameter. These descriptions are also shown in table

FZJRadar Data I in the form of e,,, where x denotes different parameter for18 - Log-Logistic
--- Lognormal each model.

1.4 -From Table I, we can see that no matter what frequency
1,2 is used, in general STD error for log-logistic parameters are

smaller than those of log-normal and Weibull.
a.

0.8- B. Goodness-of-fit in curve and RMSE
0.6
04 We may also observe the extend to which the PDF curve
0.2 of the statistic model matches that of clutter data by intuitive

0 10203040visual inspection as well as calculating the root mean square0 1000 2000 3000 4000 5000 6000 7000 8000

Clutter Amplitude at 600mHz error (RMSE).
(c) The goodness-of-fit in curve are illustrated in Fig. 7. The

X _-' histograms of original radar clutter data are skewed to the
51 ZRadar Data right. In general, LLD tends to have lower kurtosis, steeper

4.5, -Log-Logistic slope than those of lognormal and Weibull but lower PDF in4 --rl/ " -L og n o r m a l
SWeibul tail than that of lognormal. At 200MHz, LLD and lognormal

3.5, are superior to Weibull. At 400MHz, the performance of
3 2.5 lognormal is the worst. At 600MHz, Weibull become the worst

2,5 oagain and as for UWB signal, Weibull can not fit well.

2 To further evaluate the goodness-of-fit, the RMSE is ap-
1.5 plied. Let i (i=l, 2,.. ,n) be the sample index of clutter
0.5 amplitude, ci is the corresponding PDF value whereas j is the

0.5 1 1 2PDF value of the statistical model with estimated parameters
o 0.5 1 1.5 2 by means of MLE as mentioned above. The RMSE is obtained

Clutter Amplitude for UWB X o0 through the following equation:
(d)

in
Fig. 7. Model Comparison (a) 200 megahertz (b) 400 megahertz (c) 600 RMSE E (c - 0) (9)
megahertz (d) UWB n i=1



Here we apply n=101 for each model. The result is given in
Table II.

TABLE 11

ROOT MEAN SQUARE ERROR (RMSE)

PDF Log-Logistic Log-normal Weibull
200MHz 2.157 x 10-  

2.3248 x 10- 3.5849 x 10-

400MHz 2.2423 x 10 - 5  
2.8956 x 10' 2.6764 x 10-

6
600MHz 3.3864 x 10- 5  

3.4278 x 10- 1 3.7259 x 10-
1

UWB 2.739 x 10- 5  
3.1866 x 10' 4.4045 x 10- 1

This shows that despite of visual inspection, the log-logistic
model is more accurate than the other two models.

V. CONCLUSION

On a basis of foliage clutter data measured by the both
narrowband (200MHz, 400MHz and 600MHz) and UWB
radars, we show that it is more accurate to describe foliage
clutter using log-logistic statistic model rather than log-normal,
Weibull. Future research will investigate the characteristics
of target to better achieve the target detection, tracking and
imaging.
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Abstract

In this paper, we propose that foliage clutter follows log-logistic model using maximum

likelihood (ML) parameter estimation as well as the root mean square error (RMSE) on

PDF curves between original clutter and statistical model data. We not only investigate

log-logistic model, but compare it with other popular clutter models, namely log-normal,

Weibull and Nakagami. It shows that the log-logistic model not only achieves the small-

est standard divination (STD) error on estimated model parameters, but also the best

goodness-of-fit and smallest RMSE for both poor and good clutter signals.

Index Terms : foliage clutter, log-logistic, log-normal, Weibull, Nakagami, goodness-of-fit

1 Introduction and Motivation

Detection and identification of military equipment in a strong clutter background, such as

foliage, soil cover or building has been a long-standing subject of intensive study. It is believed

that solving the target detection through foliage environment will significantly benefit sense-

through-wall and many other subsurface sensing problems. However, to this date, the detection

of foliage-covered military targets with the required probability of detection and false alarm still

remains a challenging issue. Recent investigations on environment behavior of tree canopies
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have shown that both signal backscattering and attenuation are significantly influenced by tree

architecture [2]. Therefore use the return signal from foliage to establish the clutter model that

accounts for environment effects is crucial for the sense-through-foliage radar detection.

Clutter is a term used to define all unwanted echoes from natural environment [3]. The

nature of clutter may necessarily vary on a basis of different applications and radar parame-

ters. Most previous studies have investigated land clutter or sea clutter, and some conclusions

have been reached. For example, log-normal, Weibull, and K-distributions have been proven

to be better suited for the clutter description other than Rayleigh and Rician models in high

resolution radar systems. Fred [4] did statistical comparisons and found that sea clutter at

low grazing angles and high range resolution is spiky based on the data measured from various

sites in Kauai and Hawaii. David generalized radar clutter models using noncentral chi-square

density by allowing the noncentrality parameter to fluctuate according to the gamma distri-

bution [5]. Furthermore, Henry et al. used a Neural-Network-based approach to predict sea

clutter model [6] [7].

However, as far as clutter modeling in forest is concerned, it is still of great interest and

will be likely to take some time to reach any agreement. A team of researchers from MIT [8]

and U. S. Army Research Laboratory (ARL) [9] [10] have measured ultra-wideband (UWB)

backscatter signals in foliage for different polarizations and frequency ranges. The measure-

ments show that the foliage clutter is impulsively corrupted with multipath fading, which leads

to inaccuracy of the K-distributions description [11]. The Air Force Office of Scientific Research

(AFOSR) has conducted field measurement experiment concerning foliage penetration radar

since 2004 and noted that metallic targets may be more easily identified with wideband than

with narrowband signals [12].

In this investigation, we will apply ultra-wide band (UWB) radar to model the foliage

clutter. UWB radar emissions are at a relatively low frequency-typically between 100 MHz

and 3 GHz. Additionally, the fractional bandwidth of the signal is very large (greater than

0.2). Such a radar sensor has exceptional range resolution that also has an ability to penetrate
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many common materials (e.g., walls). Law enforcement personnel have used UWB ground pen-

etrating radars (GPRs) for at least a decade. Like the GPR, sense-through-foliage radar takes

advantage of UWB's very fine resolution (time gating) as well as low frequency of operation.

In our present work, we investigate the use of the log-logistic distribution to model foliage

clutter and illustrate the goodness-of-fit to real UWB clutter data conducted by AFOSR.

Additionally, we compare the goodness-of-fit with existing popular models namely log-normal,

Weibull, and Nakagami by means of maximum likelihood estimation (MLE) and the root

mean square error (RMSE). The result shows that log-logistic model provides the best fit to

the foliage clutter. Our contribution is not only the new proposal on the foliage clutter model

with estimated concrete parameters, but also provide the criteria and approaches based on

which the statistical analysis is deduced. Further, the theoretical study about the probability

of detection as well as the probability of false alarm is discussed.

The rest of this paper is organized as follows. Section 2 provides a statistical model review

on log-logistic, log-normal, Weibull and Nakagami distributions and discuss their properties

and applicability as models for foliage clutter. Section 3 summarizes the measurement and the

2 sets of clutter data that we used in this paper. Section 4 discusses estimation on parameters

and the goodness-of-fit for log-logistic, log-normal, Weibull and Nakagami models respectively.

Section 5 analyzes the performance of radar detection at presence of foliage clutter. Finally,

section 6 concludes this paper and describes some future research topics.

2 Clutter Models

Many radar clutter models have been proposed in terms of distinct statistical distributions,

most of which describe the characteristics of clutter amplitude or power. Before detailed

analysis, first we would like to discuss the properties and applicability of log-logistic, log-

normal, Weibull, and Nakagami statistic distributions, which are designated as "curve fit"

models in section 4, since they are more likely to provide good fit to our collections of pragmatic
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clutter data in general. Detailed explanations would be given in following subsections.

2.1 Log-logistic Model

Recently Log-logistic model has been applied in hydrological analysis. This distribution is a

special case of Burr's type-XII distribution [15] as well as a special case of the kappa distribution

proposed by Mielke and Jonson [16]. Lee et al. employed the LLD for frequency analysis of

multiyear drought durations [17], whereas Shoukri et al. employed LLD to analyse extensive

Canadian precipitation data [181, and Narda & Malik used LLD to develop a model of root

growth and water uptake in wheat [19]. In spite of its intensive application in precipitation

and stream-flow data, the log-logistic distribution (LLD) [13] statistical model, to the best of

our knowledge, has never been applied to radar foliage clutter. The motivation for considering

log-logistic model is based on its higher kurtosis and longer tails, as well as its PDF curve

similarity to log-normal and Weibull distributions. It is intended to be employed to estimate

how well the model matches our collected foliage clutter statistics.

Here we apply the two-parameter distribution with parametersp and a. The PDF for this

distribution is given by

f W , x>0, a>O (1)
ax(+e )

where It is scale parameter and a is shape parameter. The mean of the the LLD is

E{x} = eAr(1 + ap)(1 - o) (2)

The variance is given by

Var{x} = e2p{F(1 + 2a)F(1 - 2o) - [F(1 + a)F(1 - a)] 2} (3)

while the moment of order k is

k _ 1
E{x k} = ae'B(ko, 1 - ka), k < - (4)

4



where

B(m, n) = xm-(1 - x)n-dx (5)

PDFs for LLD for selected p's and a's are illustrated in Fig. 1.

2.2 Log-normal Model

Most previous experimental data have resulted in clutter being modeled using a log-normal

distribution, which is most frequently used when the radar sees land clutter [20] or sea clutter

[21] at low grazing angles (:5 5 degrees) since log-normal has a long tail. However, it has been

reported that the log-normal model tends to overestimate the dynamic range of the real clutter

distribution [22]. Furthermore, most previous research applies log-normal model to land and

sea clutter, but how accurately it models foliage clutter requires detailed analysis.

The log-normal distribution [23] is also a two-parameter distribution with parameters p

and a. The PDF for this distribution is given by

2

f(x)- ,e X > a>0x>0, >06)

where p is the scale parameter and a is the shape parameter. The mean, variance and the

moment of order k are given respectively by

E{x} e P+- (7)

Var{x} = (e 2 _ 1)e2L+a2  (8)

E{xk} = e kA+ 2 (9)

PDFs for selected I's and a's for log-normal distribution are shown in Fig. 2.

2.3 Weibull Model

The Weibull distribution, which is named after Waloddi Weibull, can be made to fit clutter

measurements that lie between the Rayleigh and log-normal distribution [24]. It has been

applied to land clutter [25] [26], sea clutter [27] [28] and weather clutter [29]. However, in
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very spiky sea and foliage clutter, the description of the clutter statistics provided by Weibull

distributions may not always be sufficiently accurate [30].

The Weibull distribution is also a two-parameter distribution with parameters a and b.

The PDF for this distribution is given by

f(x) = ba-bxb-Ie- (x/a)), x > 0, a > 0, b > 0 (10)

where b is tile shape parameter and a is the scale parameter. The mean, variance and the

moment of order k axe given respectively by

E{x} = ar(1 + (11)

Var{} = a2{F(1 + ) - [F(1 + )]2} (12)

E{xk} = akr(1 + k) (13)
b

PDFs for selected a's and b's for Weibull distribution are shown in Fig. 3.

2.4 Nakagami Model

In the foliage penetration setting, the target returns suffer from multipath effects corrupted

with fading. As Nakagami distribution is used to model scattered fading signals that reach

a receiver by multiple paths, it is natural to investigate how well it fits the foliage clutter

statistics.

The PDF for Nakagami distribution is given by

f( L 2() 1- x(2 -L)_
f =x e ,x>0, w>0 (14)

where It is the shape parameter and w is the scale parameter. The mean, variance and the

moment of order k of Nakagami distribution are given respectively by

E{x} = (+ () (15)r(A) A

1 F(1i ±1) 2
Var{x} = w[1- -( ----U) 21)] (16)

6



E{} =Xk +(-i 1k)( (17)
ro') i

The PDFs for selected M's and w's for the Nakagami distribution are illustrated in Fig. 4.

3 Experiment Setup and Data Collection

Our work is based on the sense-through-foliage data from Air Force Research Lab [12]. The

foliage penetration measurement effort began in August 2005 and continued through December

2005. Working in August through the fall of 2005, the foliage measured included late summer

foliage and fall and early winter foliage. Late summer foliage, because of the limited rainfall,

involved foliage with decreased water content. Late fall and winter measurements involved

largely defoliated but dense forest.

A bistatic UWB radar (individual transmit and receive antennas) system was used and

the experiment was constructed on a seven-ton man lift, which had a total lifting capacity

of 450 kg. The limit of the lifting capacity was reached during the experiment as essentially

the entire measuring apparatus was placed on the lift (as shown in Fig. 5). The principle

pieces of equipment secured on the lift are: Barth puls generator, Tektronix model 7704 B

oscilloscope, dual antenna mounting stand, two antennas, rack system, IBM laptop, HP signal

Generator, Custom RF switch and power supply and Weather shield (small hut). Throughout

this work, a Barth pulse source (Barth Electronics, Inc. model 732 GL) was used. The pulse

generator uses a coaxial reed switch to discharge a charge line for a very fast rise time pulse

outputs. The model 732 pulse generator provides pulses of less than 50 picoseconds (ps) rise

time, with amplitude from 150 V to greater than 2 KV into any load impedance through a 50

ohm coaxial line. The generator is capable of producing pulses with a minimum width of 750

ps and a maximum of 1 microsecond. This output pulse width is determined by charge line

length for rectangular pulses, or by capacitors for 1/e decay pulses.

For the return data we used in this paper, each sample is spaced at 50 picoseconds interval,

and 16,000 samples were collected for each collection for a total time duration of 0.8 microsec-
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onds at a rate of approximately 20 Hz. We considered two sets of data from this experiment.

Initially, the Barth pulse source was operated at lower amplitude and 35 pulses of clutter sig-

nals were obtained at each site but different time. These pulses have been averaged to remove

the random noise. Data have been collected from 10 different sites. one collection of transmit-

ted pulse and received backscattering are shown in Fig. 6(a) and (b) respectively. Although

pulse-to-pulse variability was noted for collections of received echoes, the fading tendency of

different returned signals are the same. These data is referred to as data set I.

Later, additional improvements were made in the measurement procedure, include the

improved isolation of transmit and receive antennas, the addition of a log-periodic antenna

(Antenna Research Associates LPC-2010-C) as a transmit antenna, and the EMCO ridged

waveguide horn (Microwave horn, EMCO 3106). Echoes for data set II were collected using

this higher amplitude transmitted pulses. 2 collections at different site with 100 pulsese average

have been obtained, one of which is shown in Fig. 6(c). To make them clearer to readers, we

provide expanded views of received traces from sample 10,000 to 12,000 in Fig. 7.

4 Statistical Analysis of the Foliage Clutter Data

4.1 Maximum Likelihood Estimation

Using the collected clutter data mentioned above, we apply Maximum Likelihood Estimation

(MLE) approach to estimate the parameters of the log-logistic, log-normal, Weibull, and Nak-

agami models. MLE is often used when the sample data are known and parameters of the

underlying probability distribution are to be estimated [32] [33]. It is generalized as follows:

Let yl, Y2, "", YN be N independent samples drawn from a random variable Y with m

parameters 01, 02, "', 0,,, where 0i E 0, then the likelihood function expressed as a function

of 0 conditional on Y is

N
LN(YIO) H fYO(YklO1,02,.'. ,Oe) (18)

k=1
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The maximum likelihood estimate of 01, 02, , Om is the set of values 91, 92, ", 9, that

maximize the likelihood function LN(YIO).

As the logarithmic function is monotonically increasing, maximizing LN(YIO) is equiva-

lent to maximizing ln(LN(YIO)). Hence, it can be shown that a necessary but not sufficient

condition to obtain the ML estimate 9 is to solve the likelihood equation

0600ln(LN(YI0)) = 0 (19)

Note that the amplitude of foliage clutter faded with the increase of sample time. Even At

the same sample, it varies for different collections. In order to better analyze its randomness,

we studied each collection. Using the collected clutter radar mentioned above, we apply MLE

to obtain fA and & for log-logistic, At and & for the log-normal, & and b for the Weibull, and fit

and ct for the Nakagami. The estimation results for data set I are listed in table 1. We also

explore the standard deviation (STD) error of each parameter. These descriptions are shown

in table 1 in the form of E, where x denotes different parameter for each model. We also

calculate the average values of estimated parameters and their STD errors in table 2.

From table 1 and 2 we can see STD error for log-logistic and log-normal parameters are less

than 0.02 and their estimated parameters vary little from data to data compared to Weibull

and Nakagami. It is obvious that log-logistic model provides the smallest STD error for all the

10 collections compared to log-normal. It is obvious that apply both Weibull and Nakagami

models, accurate shape parameter estimation can be achieved but the result of scale parameter

estimations are not acceptable.

The estimation results for data set II are shown in table 3. Due to the improvement on this

set of signal, STD error for log-logistic and log-normal parameters have been reduced compared

those of data set I. However, for Weibull and Nakagami, it is a different case, which implies

log-logistic and log-normal are much more accurate to model foliage clutter.

In the view of error on parameter estimation, log-logistic model fits the collected data best

compared to log-normal, Weibull, and Nakagami. Log-normal is also acceptable.
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4.2 Goodness-of-fit in curve and RMSE

We may also observe the extend to which the PDF curve of the statistic model matches that

of clutter data by calculating the averaged root mean square error (RMSE) for each data set.

Let i (i=1, 2,... , n) be the sample index of clutter amplitude, ci is the corresponding PDF

value whereas j is the PDF value of the statistical model with estimated parameters by means

of ISE. The RMSE is obtained through

RMSE = E (C,-i)2 (20)

k k n=,

Here we apply n=100 for each model and k is the number of data collections for each set.

In Fig. 8 and 9, we use one collection from data set I and II respectively to illustrate

the goodness-of-fit in curve. Also, we calculate the averaged RMSE of each model for both

collected data set I and II. The PDF of absolute amplitude of one collection of clutter data

is presented by means of histogram bars. In Fig. 8, it can be seen obviously that log-logistic

model with MLE parameters provides the best goodness-of-fit compared to the other models,

since it provides the most suitable kurtosis, slope and tail. As for the maximum PDF value, the

log-logistic is about 1 x 10- 3, while that of other models are over 1.2 x 10- 3 . For the slope part,

which connects the kurtosis and the tail and which is in the range from 0.1 x 104 to 0.5 x 104 in

view of x axes, the log-logistic provides the smallest skewness whereas Nakagami provides the

largest. Examination of the tails show that log-logistic and log-normal provide very similar-

valued tails, while tails of the Weibull and the Nakagami are lager than the collected data.

Meanwhile, we obtain that RMSEjog_logistic = 2.5425 x 10- 5 , RNSEjog_norma = 3.2704 x 10- 5 ,

RNSEW,ibu,11 = 3.7234 X 10- 5 , RMSENakagami = 5.4326 x 10- 5 . This also shows that the log-

logistic model is more accurate than the other three models.

Similarly, in Fig. 9 histogram bars denote the PDF of the absolute amplitude of one col-

lection of clutter data from set II. Compared to Fig 8, the log-logistic and the log-normal

provide more similar extend of goodness-of-fit. Weibull is worse since it cannot fit well
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in either kurtosis or tail, while Nakagami is the worst and unacceptable. Also, we obtain

R SE,og_logistic = 2.739 x 10 - 5 , RMSEog-normal = 3.1866 x 10- 5 , RMSEWeibal = 3.6361 X 10- 5 ,

RMSENakagami = 4.4045 x 10 - 5 . This illustrates that for clutter backscattering data set II, the

log-logistic model still fits the best.

5 Target Detection Performance

As we have mentioned previously, one of the primary goal to be carried out by a radar is target

detection. On a basis of the clutter model that have been just studied, we may apply a special

case of the Bayesian criterion named Neyman-Person criterion to analyze the target detection

performance in the foliage environment.

If the received sample signal to be tested is R, then the two hypotheses are shown as follows:

Ho: R =C + n
(21)

H 1 R =S + C + n

where C and n represent the random variable of clutter and noise respectively. C follows

log-logistic model with both parameters p and cr, and n is gaussian noise with zero mean and

variance v 2 . S is the target signal, which assumes to be a constant for simplicity.

Therefore f(RIHo) and f(RIH1 ) mean:

f(RIHo) = PDF of R given that a target was not present

f(RJH1) = PDF of R given that a target was present

They can be denoted as follows:
0_ In,r-, 2

R e 1-r)
f(RIHO) r+x e - 7 3 dr (22)

f(RH1) = I (r - e( ° ) 1e-; dr (23)

If the probability that a target was not present is P(Ho) whereas that of a target was

present is P(HI), then PDF of R is

f(R) = P(Ho)f(RIHo) + P(Hl)f(RIHI) (24)
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To decide whether there is a target or not, Neyman-Pearson detection rule is shown as

H0

f(RIHo) > P(Hi)
f(RIHj) I P(Ho) (25)

In case of P(H 1) P(Ho), (26) is simplified as

Ho

f(RIHo) < f(RIHj) (26)
H1

which actually is
2 R-r j,(r) Ho

e +---- J >
1 (27)

r[l+e ]12 H1

It is easy to obtain the decision threshold T in terms of the above function

V 2  + e 2 V 
2

[n(rrs) - ]
T = -- ln[ ,r + + - + r (28)s 1+e , 2o

Under hypothesis H 0 , a false alarm occurs anytime R > T, therefore the probability of false

alarm is

PFA = f(RIHo)dR

- 2 drdR (29)\/_2_rV F ) or + e )2r

Similarly, Under hypothesis H 1, when R > T, the target is detectable. Therefore the proba-

bility of detection is

PD = f(RIHl)dR

0- e + drdR (30)V2--av To (I + )2"-)

6 Conclusion

On a basis of 2 sets of foliage clutter data using UWB radar, we show that it is more accurate

to describe the amplitude of foliage clutter using log-logistic statistic model rather than log-

normal, Weibull, or Nakagami. Log-normal is also acceptable. The goodness-of-fit for Weibull

12



is worse whereas that of Nakagami is the worst. Our contribution is not only the new proposal

on the foliage clutter model with estimated concrete parameters, but also provide the criteria

and approaches based on which the statistical analysis is deduced. Further, the theoretical

study about the probability of detection as well as the probability of false alarm at the presence

of foliage clutter and white gaussian noise is discussed. Future research will investigate the

characteristics of targets and the design of radar receiver to better achieve the target detection,

tracking and imaging.
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Table 1: Estimated Parameters for Data Set I

PDF Log-Logistic Log-normal Weibull Nakagami
fA = 7.24161 f = 7.0455 & = 2975.33 ft = 0.177062

data 1 0'= 1.06483 6 = 2.20761 b = 0.594979 C= 9.09663e + 007
Ep = 0.0141212 EI = 0.0174527 La = 41.6157 EA = 0.00150615
,= 0.00724181 , = 0.0123415 Lb = 0.00356925 c,= 1.70907e + 006

f= 6.9716 ft=6.72573 a=2285.13 f= 0.162375

data 2 = 1.2126 & = 2.33617 b = 0.563747 c= 7.4776e + 007
Cl = 0.014747 t = 0.0184691 Ca = 33.7127 Em = 0.00137422

E= 0.00773723 E, = 0.0130602 Eb 0.00337485 E, = 1.46679e + 006
= 7.00554 f = 6.76262 6 = 2341.52 f 0.164695

data 3 = 1.10741 6 = 2.31258 b = 0.57073 c= 7.46366e + 007
EJ = 0.0145728 E, 0.0182825 E. = 34.1207 = 0.001395
E, = 0.0076303 , = 0.0129283 Lb = 0.00341448 E, = 1.45459e + 006

A = 7.03055 f = 6.80711 & = 2395.85 f = 0.167391
data 4 a = 1.07858 6 = 2.25973 b = 0.579381 L= 7.4926e + 007

Ep = 0.0142027 C1 = 0.0178647 Ca = 34.4066 EA = 0.0014916
,= 0.00741556 e, = 0.0126329 Lb = 0.00345156 e, = 1.44727e + 006

= 7.16226 f = 6.95712 & = 2806.76 A = 0.17112
data 5 = 1.10132 6 = 2.26592 b 0.577823 L = 9.03298e + 007

Cp = 0.014605 EA = 0.0179137 Ea = 40.4226 C, = 0.00145265
E, = 0.00750067 , = 0.0126675 Eb = 0.00347389 c, = 1.72749e + 006

= 7.01527 f = 6.77515 & = 2360.33 ft = 0.165292

data 6 = 1.10123 6 =2.30286 b =0.572749 L = 7.50824e + 007
E, = 0.0144902 E1 = 0.0182057 L = 34.2753 6, = 0.00140035
,= 0.00758568 E, = 0.012874 Lb = 0.00342376 , = 1.46145e + 006

= 7.14523 f = 6.94201 & = 2753.69 f = 0.170964
data 7 = 1.09486 = 2.25621 b = 0.578948 2 = 8.80474e + 007

Ci = 0.0145132 C1 = 0.0178369 La = 39.585 C11 = 0.00145125
,= 0.00745994 Ca = 0.0126132 Lb = 0.00347442 , = 1.68382e + 006

= 6.95411 f = 6.71591 6 = 2250.66 f = 0.162448

data 8 r= 1.11486 6 = 2.31898 b = 0.564989 C= 7.31436e + 007
CA = 0.0146774 C = 0.0183331 La = 33.1387 Cp = 0.00137488

C, = 0.00768003 C, = 0.0129641 Lb = 0.0033763 E = 1.4338e + 006
f = 7.18561 f = 6.9715 & = 2840.72 ft = 0.172324

data 9 c= 1.09854 6 = 2.27088 b = 0.581219 L = 8.97304e + 007
Cp = 0.0145483 C1 = 0.0179529 Ca = 40.6593 C1U = 0.00146348

= 0.00749265 C, = 0.0126952 Lb = 0.0034984 E = 1.70923e + 006
= 7.192 f = 6.99196 h = 2869.65 f = 0.173572

(ata 10 6) = 1.0866 6' = 2.23975 b = 0.584803 c= 9.01631e + 007
EA = 0.0144166 E1 , = 0.0177067 Ca = 40.837 C = 0.0014747
E = 0.0073916 LE = 0.0125211 Lb = 0.00351294 L = 1.71142e + 006
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Table 2: Averaged Estimated Parameters for Data Set I

PDF Log-Logistic Log-normal Weibull Nakagami
= 7.0904 f = 6.8695 = 2588 A = 0.1687
= 1.1061 & = 2.2771 b = 0.5769 c = 8.218e + 007average Ep = 0.0145 EA = 0.0180 Ea, 37.4316 EM = 0.0014

E, = 0.0075 E, = 0.0127 Eb 0.0035 E, = 1.4905e + 006

Table 3: Estimated and Averaged Parameters for Data Set II

PDF Log-Logistic Log-normal Weibull Nakagami
= 7.76868 f = 7.79566 = 4901.07 t = 0.239587

data 1 o 0.786511 = 1.41771 b = 0.743223 c = 1.16839e + 008
Ell = 0.0107792 A= 0.011208 Ca = 55.3011 E, = 0.00207912
,= 0.00521601 , = 0.00792559 Cb = 0.00434465 E, = 1.88719e + 006

= 7.78096 f = 7.8046 & = 4942.48 f = 0.240593
data 2 r= 0.787426 & = 1.41855 b = 0.745233 c= 1.17237e + 008

Ep 0.0107917 C[ = 0.0112147 Ca = 55.6114 EJA= 0.00208848
,= 0.0052213 E, 0.00793033 Cb = 0.0043612 e, = 1.88953e + 006

= 7.7748 f = 7.7881 & = 4921.8 A = 0.2401
=0.7870 = 1.4181 b= 0.7442 C= 1.1704 + 008

average E, = 0.0108 EA = 0.0112 Ca = 55.4565 C, = 0.0021
E, = 0.0052 6, = 0.0079 Eb = 0.0044 = 1.8884 + 006
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Figure 5: This figure shows the lift with the experiment. The antennas are at the far end
of the lift from the viewer under the roof that was built to shield the equipment from the
elements. This picture was taken in September with the foliage largely still present. The
cables coming from the lift are a ground cable to an earth ground and one of 4 tethers used in
windy conditions.
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Abstract-In this paper, we study sense-through-foliage target 2) Millimeter-Wave (MMW) radars are used in [21 [31
detection. When radar echoes are in good quality, the detection of and [4]. Results demonstrate the potential for satisfying
target can be achieved by applying short time Fourier transform performance but need further investigation.
(STFT) to the received UWB radar waveform. We compared
our approach in case of no target as well as with target against 3) Relatively low frequency Ultra-wide band (UWB) radars
the scheme in which 2-D image was created via adding voltages between 100 MHZ and 3 GHz are frequently employed
with the appropriate time offset. Results show that our approach in recent years owning to the characteristics provided by
can detect target more easily. When radar echoes are in poor their high resolutions as well as the very good ability of
condition and single radar is unable to carry out the detection, we penetration, such as penetrating walls [5] [6]. Despite
employ both Radar Sensor Networks (RSN) and RAKE structure
to combine the echoes from different radar members and finally comparatively short detection range, UWB signal would
detect the target. have advantages over a narrowband signal with limited

frequency content.

I. INTRODUCTION In this paper, we will apply our expertise in signal process-
ing, data fusion, radar sensor networks (RSN) etc. to achieve

Detection and identification of military equipment in a effective target detection in foliage using ultra-wideband
strong clutter background, such as foliage, soil cover or (UWB) radar.
building leads has been a long-standing subject of intensive The remainder of this paper is organized as follows. In
study. It is believed that solving the target detection through Section II, we summarize the measurement and collection of
foliage will significantly benefit sense-through-wall and many data used in this study. In Section III, we propose a short time
other subsurface sensing problems. However, to this date, the Fourier transform (STFT) based approach for through-foliage
detection of foliage-covered military targets, such as artillery, target detection when the signal quality is good. In Section
tanks, trucks and other weapons with the required probability IV, we propose RSN and RAKE structure for target detection
of detection and false alarm still remains a challenging issue. in foliage when the signal quality is poor. We conclude this
This is due to the following facts: paper and discuss some future research topics in Section V.

1) Given certain low radar cross section(RCS), scattering I. DATA MEASUREMENT AND COLLECTION
from tree trunk and ground reflectivity may largely
overwhelm the returned target signals of interest, thus Our work is based on the foliage penetration field test data
very high multiple fading may severely corrupt the from Air Force Research Lab [7]. The foliage penetration
amplitude and phase of the echoes. measurement effort began in August 2005 and continued

2) Even if the target is stationery, tree leaves and branches through December 2005. Working in August through the fall
are likely to swing in result of gust, which will result in of 2005, the foliage measured included late summer foliagedoppler shift of clutter and difficulty of target detection, and fall and early winter foliage. Late summer foliage, because

of the limited rainfall, involved foliage with decreased water
Over the past two decades, following 3 types of signals have content. Late fall and winter measurements involved largely

been mainly studied to examine the performance on target defoliated but dense forest.
detection in foliage: The foliage experiment was constructed on a seven-ton man

1) Traditional sinusoidal waveforms at VHF through UHF lift, which had a total lifting capacity of 450 kg. The limit
bands [ I ], as the lower the radar frequency, the lower the of the lifting capacity was reached during the experiment
attenuation and scattering from branches and trees, and as essentially the entire measuring apparatus was placed on
thus better penetration through foliage. However, these the lift. The principle pieces of equipment secured on the
approaches result in low resolution and low RCS. lift are: Barth pulser, Tektronix model 7704 B oscilloscope,



dual antenna mounting stand, two antennas, rack system, IBM target response will be the echo difference between Fig. 3b and
laptop, HP signal Generator, Custom RF switch and power Fig. 3a, which is plotted in Fig. 3c. However, in a practical
supply and Weather shield (small hut). situation we either obtain Fig. 3a (clutter echo without target)

The target is a trihedral reflector with a slant length of 1.5 or Fig. 3b (target on range) without the knowledge about the
meters(as shown in Fig. 1). It is 250 feet one-way distance presence of a target. The challenge is how can we make target
from the antenna. Throughout this work, a Barth pulse source detection only based on Fig. 3b (with target) or Fig. 3a (no
(Barth Electronics, Inc. model 732 GL) was used. The pulse target)?
generator uses a coaxial reed switch to discharge a charge line
for a very fast rise time pulse outputs. The model 732 pulse 40

generator provides pulses of less than 50 picoseconds (ps) rise
time, with amplitude from 150 V to greater than 2 KV into any
load impedance through a 50 ohm coaxial line. The generator - 2

is capable of producing pulses with a minimum width of 750
ps and a maximum of 1 microsecond. This output pulse width 0

is determined by charge line length for rectangular pulses, or
by capacitors for l/e decay pulses. w-2

-3

o 2000 4000 6=o Aol€ 1 O D 1 60001oo

sample index

(a)
4

-2

-2

-3
0 2OW0 4o 6000 WN 00D o 12000 1400 160
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Fig. 1. The target (a trihedral reflector) is shown on the stand at 300 feet (b)
from the lift.

Fig. 2. Measurement with very good signal quality and 100 pulses integration.
For the data we used in this paper, each sample is spaced at (a) no target on range (b) with target on range (target appears at around sample

50 picosecond interval, and 16,000 samples were collected for 14000)

each collection for a total time duration of 0.8 microseconds.
We considered two sets of data from this experiment. Initially, To solve this problem, a scheme is previously proposed in
the Barth pulse source was operated at low amplitude and [8], where 2-D image was created via adding voltages with the
significant pulse-to-pulse variability was noted for these col- appropriate time offset. In Figs. 4(a) and 4(b), we plot the 2-D
lections. We refer this set of collections as "poor" signal. The image created based on the above two data sets (from samples
scheme for the target detection in foliage with "poor" signal 13,800 to 14,200) using the approach in [8]. However, from
quality will be presented in Section IV. Later, good signal these two figures, it's not obvious that which image shows
quality data were collected using higher amplitude pulses and there is a target on range.
100 pulses reflected signals were averaged for each collection. Although Fig. 3a and 3b look quite similar at first sight,
The scheme for target detection with "good" signal quality will after careful observation, it is not difficult to find that the
be presented in Section III. sample strength change more abruptly where target appears

(around sample 14000), which implies that echo from tar-
Ill. TARGET DETECTION WITHGOOD SIGNAL QUALITY: get contains more AC values than that without target. ThisA STFT-BASED APPROACH phenomenon inspires the application of short time Fourier

In Fig. 2, we plot two collections with good signal quality, transform (STFT), that is using a slide window to determine
one without a target on range (Fig. 2a) and the other one with the sinusoidal frequency and phase content of a signal as it
a target on range (Fig. 2b and target appears at around sample changes over time. This form of the Fourier transform has
14,000). To make it more clear to the readers, we provide a great many applications in sonar and radar processing. We
expanded views of traces (with target) from sample 13,001 to will show that STFT-based approach is able to make target
15,000 for the above two collections in Figs. 3a and 3b. The detection more intuitively and easily.
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(b) (b)

3000 Fig. 4. 2-D image created via adding voltages with the appropriate time
offset (a) no target (b) with target in the field

2000

1000 values (m > 4)

L-1
0 P(m) =1 F(m, w)'2  (2)

w=4
-1000

We plot the power of AC values P(nt) versus time domain
-200I 1 sample index in Fig. 5a and 5b for the data sets in Figs. 2a

T3 1.35 1.4 1.45 1.5
sample index X 104 and 2b respectively. We can see that at the samples where

(c) there is a target, the curve of the power signal looks like a
Gaussian pdf other than chaotic impulses. And thus it is quite

Fig. 3. Measurement with good signal quality and 100 pulses integration straightforward to see that there is no target on range in Fig.
(a) Expanded view of traces (no target) from samples 13001 to 15000 (b) 5a.
Expanded view of traces (with target) from samples 13001 to 15000 (c) It's worth mentioning that for better visual inspection,
Expanded view of traces difference between with and without target window length and step size may change on a basis of different

radar data.

The discrete STFf can be expressed as IV. TARGET DETECTION WITH POOR SIGNAL QUALITY:

RADAR SENSOR NETWORK AND DIFFERENTIAL-BASED
N-1 APPROACH

F(rn, w) E Z r(n)w(n - )e - jwn (1) As mentioned in Section II, when the Barth pulse source
n=:O was operated at low amplitude and the sample values are

not obtained based on sufficient pulse response averaging
where r(n) is radar measurement and w(n) is the window (averaged over 35 pulses for each collection), significant pulse-

function. We apply rectangular window, with its length L = 30 to-pulse variability was noted and the return signal quality is
and step size M = 16. Then we cumulate the power of AC poor. Fig. 6 illustrate the received echoes in this situation.
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Fig. 5. The power of AC values versus sample index. (a) no target (b) with
target in the field 2000 1

Even with the application of the STFT-based scheme proposed 0 v
above, we can not tell whether there is a target or not in the -2000
range. Since pulse-to-pulse variability exists in the echoes at
different time or different site, this motivate us to explore the -400t'3 1.35 1.4 1.45 1.5
spatial and time diversity using Radar Sensor Networks (RSN). sample index X 104

In nature, a network of multiple radar sensors can been uti- (c)
lized to combat performance degradation of single radar [10].
These radar sensors are managed by an intelligent clusterhead Fig. 6. Measurement with poor signal quality (a) Expanded view of traces
that combines waveform diversity in order to satisfy the com- (no target) from samples 13001 to 15000 (b) Expanded view of traces (with

of the network other than each radar operate sub- target) from samples 13001 to 15000 (c) Expanded view of traces differencemon goals obetween with and without target
stantively. As radar sensors are environment dependent [1 1],
it may provide better signal quality if different radars work
collaboratively to perform data fusion. For example, consider 8. The echo, i.e., RF response by the pulse of each cluster-
a system of two radars. When the signal of either radar member radar sensor, will be combined by the clusterhead
unfortunately experience a severe fading, if two radars are using a weighted average, and the weight Ai is determined by
spaced sufficiently far apart, it is not likely that both of the the power of each echo xi(m) (m is the sample index),
radars experience deep fade at the same time. By selecting
better waveform from the two radar waveforms, the data is A E (3)
less likely to be lost. En I E,

In this paper, we assume the radar sensors are synchronized
in RSN and we employed RAKE structure to combine received and
information for RSN. The detailed process is shown in Fig. Ej = var(xi(m)) + [mean(xi(m))j 2 (4)
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[1, 2, 3], directed diffusion algorithms [4, 5], clustering
ABSTRACT algorithms [6, 7, 8], data aggregation [9] and MAC

Energy conservation is critical in Wireless Sensor protocols [10, 11, 12]. Many of these algorithms assume
Networks. Replacing or recharging batteries is not an fixed transmit power and baud rate.
option for sensors deployed in hostile environments. In this paper we study the effect of changing the
Generally communication electronics in the sensor utilizes transmit power and baud rate on transmission distance.
most energy. This paper studies the effect of changing the This study is particularly useful for WSN's which are
transmission power and baud rate on transmission mobile, such as in applications involving robotic swarms
distance. Using Shannon channel capacity formula and [19]. We experimentally determine a relation between
Log - Distance Path Loss Model, transmission distance is distance, transmit power and baud rate for Crossbow's
shown to be related to transmit power and baud rate. Mica2 motes deployed in indoor environment. This can be
Extensive empirical readings are taken to confirm the incorporated along with the above algorithms and with
above relation. The path loss exponent got as a result of knowledge of the distance to neighboring mote and the
data fitting is within the acceptable range for wireless traffic density can be used to adjust the transmit power
environment. Using the equation derived in this paper, the and baud rate so that packets can be forwarded to the
distance between neighboring motes and traffic density it neighboring mote with the least energy and maximum
will be possible for sensors to adjust their transmit power reliability. Adjusting the transmit power the neighboring
and baud rate so as to use only the required amount of mote will fall within the transmission range and neither
energy to maintain the wireless link to the neighbor and will be out of range nor will be the transmission range
conserve power. much bigger than the desired distance. This will also help

to keep packet exchange to the desired mote and not to any
I. INTRODUCTION distant mote, which can itself start some other packet

Wireless Sensor Networks (WSN) are comprised of exchange and so will help keep interference to a
small, inexpensive sensors with wireless communication minimum. This study along with the energy efficient
capabilities, called motes. They are deployed in ad - hoc algorithms will further increase energy efficiency in real
networks and are powered by limited power supplies, time when deployed on Mica2 motes.
Thsetwoes adre deplowed in lied m er a pvie This paper is organized as follows. In section II weThese motes are deployed in large numbers and provide briefly describe the factors affecting transmission
unprecedented opportunities for instrumenting and distance. Section III gives the details of our experimentcontrolling homes, cities and the environment. They find and the empirical data plots obtained. In section IV curve

applications in different fields like military sensing, and surface fitting is described and lastly in section V we
physical security, air traffic control, traffic monitoring, andvidefaconu s cribedy.
video surveillance, industrial automation etc. Each poses provide a conclusion of our study.
different challenges for these motes but one common II. TRANSMISSION DISTANCE
challenge faced in all fields is power conservation. This is
because motes are sometimes deployed in difficult to The study of Transmission Distance, Transmit Power
reach regions and this makes it difficult to replace the and Baud Rate done for this paper is related to Energy
batteries. Hence power conservation becomes an Conservation in Wireless Sensor Network. Transmit
important factor for these motes. One of the main reasons Power and Baud Rate together affect the Transmission
for deploying these motes in ad - hoc is power Distance. In a wireless channel there is some power loss
conservation. Power is consumed during data processing called Path Loss. This path loss is inversely proportional
and RF communication, but communication electronics to the distance between the transmitter and receiver. With
uses far more power than processing. Hence a lot of effort the knowledge of distance and path loss we can find the
goes into designing energy efficient routing algorithms exact transmit power required to maintain a good link to

the receiver without wasting any energy.
1-4244-1513-06/07/$25.00 ©2007 IEEE
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Another factor that affects the transmission distance is (lower and upper FSK frequency)..f, is the reference
the antenna sensitivity. Baud rate of the data affects the frequency calculated using the formula given below.
receiver antenna sensitivity. This is because at the higher FREQ is the value in frequency control word A or B
baud rate, there is less energy and a fewer number of according to whether the formula is used to calculate
actual radio waves in each bit of information transmitted. receive or transmit frequency. FSEP is the value in the
The lower baud rates have more energy per bit and more FSEPO and 1 registers. TXDATA is 0 or 1 in transmit mode
actual radio waves per bit transmitted. The more radio depending on the data bit to be transmitted. In the receive
waves received per bit makes it much easier to establish mode TXDATA is always 0. Now to calculate f we use
the correct waveform. Thus, lower baud rates mean more

energy per bit; better receive signals and longer the following formula[15]
transmission distances [13]. The advantage is by keeping ff = REFDIV
the transmit power constant and only decreasing the baud
rate we can increase the transmission distance of the radio. ' is the crystal oscillator frequency of 14.7456 MHz

and REFDIVis set to 12. This gives f, = 1.2288 MHz.
III. EXPERIMENT DETAILS Using all these values in eq. 1, in receive mode

The following hardware was used for the experiment A-co = 433.152 x 106 Hz and in transmit mode
1. MIB510 Programming board manufactured by f"1o = 432.96997 x 106 Hz.

Crossbow Technology. Thus the LO frequency in the receive mode is
2. Mica2 motes 2 nos. manufactured by Crossbow 433.152 MHz. In the experiments we have used a high

Technologyside LO injection. SO fVC = fRF + fF where fRF is the
For the radio communications Mica2 uses the CC 1000 sieL incto.Sfco=RF+fFwreRFsthCorhi whdiocmmunictions works ins the 43 Mz bcentre frequency and fiF is the Intermediate frequency. ForC hip w hich w orks in the 433 M H z band. T he usual C 1 0 1 s d s g e o b 5 .3 5 K z o w e
antenna chosen is a length of insulated wire called the CRO i is dt0Smonopole whip antenna one - quarter wavelength fR = 433.00 19625 MHz.

flwq rte 4 Mh The upper FSK transmit frequency is given bylong. This happens to be 6.8 inches f = f0 + fsep. f0 is the fvco frequency calculated above forMica2 [14]. Mica2 is powered by two AA batteries transmit mode i.e. 432.96997 MHz and f,,, is the
and requires a voltage between 2.7 - 3.3 Volts for frequency separation calculated using the formula [15]
successful operation, given below.

FSEP (3)
A. CC 1000 transceiver details f, = f X 16384

CC1000 uses the Binary Frequency Shift Keying Substituting the valuesf6=363975Hz further using this
(BFSK) modulation in the physical layer. Its transmit
power and the baud rate are completely programmable. fs,p we get f, = 433.03395 MHz. From f0 and f, the centre
The crystal oscillator connected has a frequency of frequency will be 433.0019625 MHz and is same as in the
14.7456 MHz. There are 22 inbuilt 8 - bit registers which receive mode.
can be used to program the operating parameters. A few The transmit power of CC1000 can be varied from
relevant parameters are as follows. -20 dBm to 10 dBm in steps of I dB and is controlled by

Frequency Control Word A which sets the local the PA_POW register. We carried out our experiments at
oscillator frequency in receive mode and Frequency four different power level setting as shown in Table 1.
Control Word B which sets the transmitting frequency, f0  Another parameter that was required for our
in the transmit mode, together operate the frequency experiments is the baud rate. This is set using a part of
synthesizer (PLL). In the experiment Word A had a value MODEMO register as shown in Table 2. For our
of 0x580000 and B had a value of 0x57F685. Two experiments we used 19.2, 38.4 and 76.8 kBaud.
registers FSEPO and I are used to set the frequency
separation and they hold a value of 0x355. Transmit and
receive frequencies can be calculated using the following
formula [ 15].

f co = fI × FREQ + (FSEP x TXDA TA) + 8192 (1)
16384

Here f,,,gives the Local Oscillator (LO) frequency in

receive mode and the f0 and f, frequency in transmit mode
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Table 1: PA_POW register values and corresponding summary packet to the computer attached to it. A
output power [15] resolution of 5 inches was used for the distance between

Output Power PA_POW Register Value the transmitter and receiver. Once it is found that the
(dBm) (hex) receiver is not receiving any packets at all we know that-20 01

-19 01 the receiver is out of the transmission range. When it is
-18 02 absolutely sure the receiver is out of range the transmit
-17 02 power or baud rate on the transmitter mote are changed to
-16 02 a different value and the above experiment carried again.
-15 03 The plots in Figure 2 were generated using the data
-14 03 gathered from the experiment.-13 03

-12 04 . . ,

11 04 ~~_

Table 2: MODEMO register part to set Baud Rate 15]
Register Bit & Parameter Value

Part Name
000: 0.6 kBaud
001: 1.2 kBaud
010: 2.4 kBaud

MODEMO{6:4} 011: 4.8 kBaud
BAUDRATE(2:0) 100: 9.6 kBaud

101: 19.2, 38.4 and 76.8 kBaud
110: Not Used
I 1l1: Not Used

The experiment was carried out in a big warehouse ...
which was used as a lab with minimal office furniture. The
Mica2 motes were placed on the ground and were always (a)

in line of sight of each other. The following picture was
taken during the experiment... , -.....

1'f

Transmitter -

(a) (b)
Figure 1: Experimental Site (a) Front view (b) Top view of . . i .. o

motes

(b)
For the transmitter mote a certain power level and baud

rate is set from the possible options available. Since the
wireless channel varies a lot randomly with respect to time
there will be some packet loss even when the receiver
mote is within the transmission distance. Hence the
transmitter mote sends a total of 4000 packets, so as to
follow Monte Carlo method, each with a sequence
number. The receiver mote keeps a record of the number
of packets received and missed and finally transmits a
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-.. . . .. . squared deviations. A fter fitting Q - function to each
0 ocurve following plots were generated. All curve fits are

not shown in Figure 3 but the data got from all curve fits is
shown in Table 3.

.....-........... ........... 1542. S,F..,5.......0

2 F9 2r
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1A n a l o n s e o t ef6

Figure 3: Menc Std. ft a tR 19.2kdul 2 1 9. 2 Biit

- above for different baud rate and transmit power

Bd aud Pwras i Curve Parameters Residual
(d)atd) Power (Inches) Error

Figure 2: Packet success in percentage as a function of 
Mean = 149.6819

transmission distance for power levels ofa(a) -19.5 dBm, -19.5 Std Dev = 3.093 208.8363
(b) - 17 dBm, (c) - 14 dBm, (d) - 11.5 dBrn and for 170 Mean = 167.642 780919.2 kBaud, 38.4 kBaud and 76.8 kBaud 76.8 Sid Dev = 4.567

euls.0 Mean = 222.2506 show6
Each curve from the plots in Figure 2 is initially in the 

Std Dev = 1.0526
region of 90 - 100 % this is because the transmitter and - 11.5 Mean= 302.4448 148.6817
receiver motes are within the transmission range. A few 

SdDevu= 1.0754
packets are dropped but this could be because of variations 

-19.5 Mean = 0. 8.4137
Std Dev = 183.093in the channel that occur for a very small amount of time 
Mean= 191.759

and is normal for any wireless channel. As the distance 76.4 StdDev = 0.9316 79.2
between the transmitter and receiver is increased, after a -314. Mean = 256.6509 3423

M e14,0 222.2506

certain distance the curve drops drastically and the packets 
Std Dev = 1.1637

received are in the range of 0 - 5 %. This implies the -11.5 Mean = 328.0941 115.0494
transmitter is out of range of the receiver mote. 

Std Dev = 1.319
Mean = 190.75

pakes r dopedbt hi oud e eaue f aiaios-19.5 tdDv03233 57.4137

IV. DATA FITTING Std Dev = 1.8992
in7.0 tcaMean = 239.1081

an snra fraywrlsscanl s-h itne170 719251

The empirical data is thought to be derivable from some 19.2 Std Dev = 2.0253
underlying function. The plots in section III seem to -14.0 Mean3 292.7798

Mean 190.752

closely follow the Q - function. We used curve fitting StdDev= 1.3931
using method of least squares to minimize the sum of -11.5 Mean 353.1259 35.7488Std Dev = 0.9846

4 of 7



For all the above std. dev. of distance the Thus we relate the transmission distance with transmit
average = 1.899 in. The maximum error is 2.668 in. This power, baud rate and channel bandwidth. We use this
is the error in the std. dev. of Q - function and not in the equation in the surface fit using method of least squares.
transmission distance. In transmission distance the error In the above equation PL(do) is calculated using the
will be 2.668/2 = 1.334 in. This is because only the Friis free space path loss formula [17] given below.
distance between mean and monotonically decreasing part PLdo) =_ log,o (9)
of Q - function is included while measuring transmission (4 )7 dj
distance.
The mean of the distance in Table 3 is related to channel Here 2 is the wavelength and do is the reference distance.
bandwidth and frequency of operation apart from transmit Centre frequency of the motes is 433.002 MHz, as
power and baud rate. This is three dimensional and we use calculated in section III, from which we get A and the
surface fit as mentioned below, distance do it is said should be in the far - field region of
A very important result derived by Shannon [16] is the transmitting antenna. This far - field region or

C' = x log, I + P, (4) Fraunhofer region of a transmitting antenna is defined as
L (N,x Bjj the region beyond the far - field distance d, which is

Here C is the channel capacity in bits per seconds, B, is related to the antenna dimension and wavelength. It is

the channel bandwidth in Hz, P, is the received power in given as follows [17]
watts and No is the single - sided noise power density in df 2xD 2  

(10)
A

watts / Hz. Writing in terms of P and converting it to Wheredf is the far - field distance, D is the largestWhrdBms wefr- il dsane gettelags
dBm we get [physical linear dimension of the antenna and A is the
p,(dBm)=lO×logl[1000xNxB 2-_1 (5) wavelength.

m lThe Mica2 motes have a monopole whip antenna which
In the wireless channel the received power is calculated is 2/4 meters high. Using 433.002 MHz frequency we get

using the formula [17] below. A = 0.6928 m = 27.2767 in and the whip antenna
P,(d)dBm]=P,[dBm]-PL(d)[dB] (6) height = 0.1732 m = 6.8 in. So D = 0.1732 m. Putting

Here P(d) is the received power in dBm at a distanced these values in eq. (10) we get df = 0.086116 m = 3.3903 in

from transmitter,P, is the transmit power in dBm Additional criteria to be in the far - field region are d,
and PL(d) is the path loss in dB at a distance d from must satisfy

transmitter. For finding the path loss PL(d) we use the i.e. df))6.8 in and

Log - Distance Path Loss model [ 17] where df))Ai.e. d.)) 27 .2 767 in.
So to be in the far - field region we choose our distance

PL[dB] =PL(d))+ 110 x n log,,0( (7) do to be 100 in= 2.54 m and from the 2 value got abovedo we calculate PL(do) and use it in eq. (8). The NO inIn this formula PL[dB] is the path loss in dB, PL(do) is w aclt Ld) ad uei n e.() h 0 i
eq. (8) is calculated using NO = k x T. k is the Boltzmann

the path loss at a reference distance do, n is the path loss -23 2

exponent, d is distance in meters at which the path loss is constat degree kg = 30 an T iheroom temperature in degree kelvin = 3000 k. The channel
to be calculated and d o is the reference distance also in bandwidth for 433 MHz Mica2 mote, B, = 620kHz [18].

meters. Using all these values in eq. (8) we try to find the best
Substituting eq. (7) in (6) and the result in (5) we get values for n the path loss exponent such that the error,

P,[dBm]-PL(d)- lOxnxlog,(, d,,' =10xlog, 1OOOxN,xB, 2 c-1 between the distances calculated using eq. (8) and the
values of distance we got from our experimental data, is

Solving for d we have minimized. To start with, a value of one is assumed for n.
I-.(J)-h,1o Iol,o{hNo&.B -~2~~Ij After doing the surface fit we get the following graphs.

d = d, x 10 (8)
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In the plot above the white bars show the distances got
using the empirical data at baud rates of 19.2, 38.4 and
76.8 kBaud. The black bars show the distance got using
eq. (8). So the difference between the two is the error. For
comparison purpose the table below shows the empirical

2-- - - distance, distance obtained using eq. (8), the absolute error'6 200- " " -

between the two and the percentage error.

- ------- -" Table 4: Summary of mean of distance and absolute error
.. .. T TransmEmpirical Data-' - , Ws Transmit Baud Rate

I . 0 Power 19.2 kBaud 38.4 kBaud 78.6 kBaud
M. Bl B,,(=.o - 19.5 dBm 190.7526 168.0964 149.6819Y- x- BA. j

(a) -17.0 dBm 239.1081 191.7589 167.6420
-14.0 dBm 292.7798 256.6509 222.2506

4o b Ub -11.5 dBm 353.1259 328.0941 302.4448

Shannon Formula Surface Fit - n = 4.10
'- "Transmit Baud Rate

, Power 19.2 kBaud 38.4 kBaud 78.6 kBaud
"300 - 19.5 dBm 223.0249 187.8755 157.8458

- -17.0 dBm 256.6032 216.1618 181.6109

-14.0 dBm 303.6356 255.7817 214.8980
, -11.5 dBm 349.3505 294.2918 247.2528

-Absolute Error

.... N - Transmit Baud Rate10... Power 19.2 kBaud 38.4 kBaud 78.6 kBaud

19.5 dBm 32.2723 19.7791 8.1639" °-17.0 dBm 17.4952 24.4028 13.9689

T--P, X -14.0 dBm 10.8558 0.8692 7.3526
r,n Y PU. m dm au iei (W. d)

(b) -11.5 dBm 3.7754 33.8022 55.1921

Figure 4: Mean of Distance vs Transmit Power and Baud Max Error - 55.1921 Min Error - 0.8692
Rate using (a) Empirical Data (b) eq. (8) derived from Percentage Error
Shannon theorem and Path Loss Model Transmit Baud Rate

Power 19.2 kBaud 38.4 kBaud 78.6 kBaud

The optimized value of path loss exponent n got from - 19.5 dBm 16.9184 11.7665 5.4542
surface fit is n = 4.10. The following graph compares -14.0 dBm 3.7078 0.3387 3.3083

distances using both data and also shows the surface. -11.5 dBm 1.0691 10.3026 18.2486
. . .. .. . .. ............... tONote: All distances in Inches.

The error in the above table is very small. A close
comparison of empirical data and surface fit data reveals a

L |mix of positive and negative errors in mean of distance
"j which will reflect in the same way in transmission

I> f distance. When this equation is used in a networking
j t protocol most of the time the transmit power and baud rate

*i1 I I set will maintain a good link to the receiver. The bad link
0 I11 _ I~ occurring, in spite of setting the transmit power and baud

' .. rate as per eq(8), can happen also because of the dramatic
change in the environment for short or long period of time.
In this case the transmit power could be slightly increased

...,.a :'% ... or the baud rate slightly decreased to maintain a good link.
Figure 5: Comparison of Mean of Distance vs. Transmit Once done these new values can be used throughout the
Power & Baud Rate using Empirical & Surface Fit data lifetime of the network.
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Tuning of the transmission power and baud rate will [31 D. Braginsky, D. Estrin, "RumorRoutingAlgorithm For Sensor Nenv.orks'"
Proc. of It Intl. Workshop on WSN & App., Sept 2002, Pages: 22 - 31.only increase the network setting time a little but [41 C. Intanagonwiwat, R Govindan, D Estrin, J Heidemann, F Silva,

afterwards throughout the operation of the network energy "Directed Diffusion for Wireless Sensor Networking" IEEE/ACM Trans
will be conserved. The equation in this paper definitely on Networking, Vol. II, No. 1, February 2003 Pages 2 - 16.

[5] J. Kulik, W. Rabiner and H. Balakrishnan, "Adaptive Protocols forgives a better starting point at fixing the transmit power Information Dissemination in Wireless Sensor Networks" Proc. 5'h Annu.
and baud rate rather than approximately varying them ACM/IEEE Int. Conf Mobile Computing and Networking (MobiCom
from minimum to maximum and wasting a lot of time for 1999), Pages: 174- 185.

[6] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy
network setup. Efficient Routing Protocols for Wireless Microsensor Networks" Proc. of

33rd Hawaii Int. Conf System Sciences (HICSS), Maui, HI, January 2000.

V. CONCLUSION [7] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, "An Application -
Specific Protocol Architecture for Wireless Microsensor Networks" IEEE

The key challenge in Wireless Sensor Networks being Trans. Wireless Comm., Vol 1, No. 4, October 2002 Pages: 660 - 670.
[81 A. Wang, W. Heinzelman, and A Chandrakasan, "Energy - Scalablepower conservation, the study in this thesis will support Protocols for Battery - Operated Microsensor Networks" Proc. 1999

multi - hop routing and clustering algorithms in increasing IEEE Workshop Signal Processing Systems (SiPS 1999), October 1999,
the power saving in each sensor node. Using Shannon Pages: 483-492.

[9] B. Krishnamachari, D. Estrin, S. Wicker, "The lmact of Datatheorem and Log - Distance Path Loss Model the 9]Aggregation in Wireless Sensor Networks", Proc. of 22 Intl Conf on
transmission distance is shown to be related to transmit Distributed Computing Systems, July 2002, Pages: 575 - 578.

power and baud rate. The extensive empirical data [10] J. Polastre, J. Hill and D. Culler, "Versatile Low Power Media Access for
Wireless Sensor Networks" Proc. of 2d Intl. Conf on Embeddedobtained confirms to this relation of transmission distance. Networked Sensor Systems, November 2004, Pages: 95 - 107.

The optimized value of the path loss exponent obtained as [11] W. Ye, J. Heidemann, D Estrin, "An Energy Efficient MAC protocolforresult of surface fitting is close to that obtained in other Wireless Sensor Networks" Proc. IEEE Infocom 2002, Vol 3,a rPages: 1567- 1576.
wireless environments. Using this relation along with the [12] Q. Ren, Q. Liang, "A Contention Based Energy - Efficient MAC Protocol

knowledge of localization and traffic density between the for Wireless Sensor Networks", IEEE Wireless Communications and
Networking Conf, Vol. 2, April 2006, Pages: 1154 - 1159.neighboring mote it will be possible to adjust the transmit [13] "Wireless Instrumentation: Factors Affecting Transmission Distance",

power and / or the baud rate to maintain the wireless links Accutech Tech Note # 215, Accutech Instrumentation Solutions,
between the neighboring motes without loosing the http://www.savewithaccutech.com/tech-center/technical-articles.asp
connection and without incurring huge energy costs. [14] "MPR / MIB User's Manual", Rev A September 2005, Crossbow

c Technology, http://www.xbow.com/Support/wUserManuals aspx
Apart from the advantage of power saving, the correct [151 "CC1000 Single Chip Very Low Power RF Transceiver Datasheet",

transmit power level will decrease the level of interference Chipcon Corporation,
http://www.chipcon.com/files/CC 1000 Data_Sheet 2_3.pdf

in the network since less motes in the surrounding will [16] J. Proakis, "Digital Communication", Fourth Edition, McGraw - Hill,
hear the conversation. There is also an increase in the 2001.
network capacity as the packet transmissions are confined [17] T. Rappaport, "Wireless Communications: Principles and Practice",Second Edition, Pearson Education, 2004.
only to the small local area and other motes out of the area [18] J. Jeong, S. Kim, "DOT3 Radio Stack",
are free to carry out their own transmissions with some www.cs.berkeley.edu/-jaein/presentations/JaeinJeong_ChipconRadioStack

.ppt
other motes within their area. [19] DO. Popa and FL. Lewis, "Algorithms for robotic deployment of WSN in

adaptive sampling applications" in Wireless Sensor Networks and
ACKNOWLEDGMENT Applications, ed. Y. Li, M. Thai, and W. Wu, Springer-Verlag, Berlin,

2006, to appear.
The authors would like to thank Prasanna M. Ballal of

ARRI's DIAL Lab for his help with the experimental
testbed used in this paper.

This work was supported in part by Office of Naval
Research (ONR) under Grant N00014 - 07 - 1 - 0395,
N00014 - 07 - I - 1024, and National Science Foundation
(NSF) under Grant CNS - 0721515.

REFERENCES

[1] A Woo, T. Tong and D. Culler, "Taming the Underlining Challenges of
Reliable Multihop Routing in Sensor Networks" Proc. of I" Intl, conf. on
Embedded Networked Sensor Systems SenSys November 2003.

[2] C. Perkins and E. Royer, "Ad hoc On - Demand Distance - Vector
Routing". Proc. of 2

"
d IEEE Workshop on Mobile Computing Systems and

Applications, 1999.

7 of 7



Distributed Connected Dominating Set Construction
in Random Geometric k-Disk Graphs

Dechang Chen Kai Xing
Uniformed Services University Computer Science

Of the Health Sciences The George Washington University
Bethesda, MD 20814, USA Washington, DC 20052, USA

dchen@usuhs.mil kaix,wcheng@gwu.edu

Qilian Liang E. K. Park
Electrical Engineering Computer Science & Electrical Engineering

University of Texas at Arlington University of Missouri at Kansas City
Arlington, TX 76019, USA Kansas City, MO 64110, USA

liang@uta.edu ekpark@umkc.edu

Abstract-In this paper, we study the problem of minimum graphs, is NP-hard [3]. In this paper, we first figure out the
connected dominating set in random geometric k-disk graphs. size relationship between any maximal independent set (MIS)
This research is motivated by the problem of virtual backbone and the minimum connected dominating set in Gk. Then we
construction in wireless ad hoc and sensor networks, where
the coverage area of nodes are disks with different radii. We report two distributed approximation algorithms for connected
derive the size relationship of any maximal independent set and dominating set construction.
minimum connected dominating set in geometric k-disk graphs,
and apply it to analyze the performances of two distributed Our major contributions are three folds. First, we prove
connected dominating set algorithms we propose in this paper. that the maximum number of independent neighbors a node
These algorithms have bounded performance ratio and low may have in a geometric k-disk graph is at most 5 +
communication overhead, and therefore have the potential to be [ n(21 )k 1 Second, we derive the size relationship be-
applied in real ad hoc and sensor networks.

tween any MIS and the MCDS in geometric k-disk graphs,
Index Terms--connected dominating set, random geometric k- which is (7in k fl)] k__sF

disk graphs, maximal independent set, performance ratio. 1n(2os()) +4)opt + 2 (2 )) 1, where
opt is the size of any MCDS. Note that the best results in
literature were reported by Thai et al. in [4], which stated thatInk

I. INTRODUCTION when k > 1, each node has at most 101111(2s)] number
Let V be the set of points denoting the set of nodes of independent neighbors and the size of any MAS is at most

randomly placed in the Euclidean plane. Associated with 1O[0opt. Notice that our results work for unit-disk
Vu e V is a radius ru such that 1 < r, < k, where k is graphs too, where k=.
a constant. Let Gk(V, E) be the disk graph constructed from The third contribution of this paper is the two distributed
V such that an edge (u, v) G E if and only if the distance approximation algorithms, for which we conduct rigorous
between u and v is at most min{r, rv}. We call Gk a random theoretical performance analysis. In the first algorithm, we
geometric k-disk graph or a geometric k-disk graph. Whengeomec kdisk a r-disk graph. W grow a CDS from a leader. This algorithm requires each nodek = 1, Gk, is a unit-disk graph. know the ids of its neighbors. In the second algorithm, we

Geometric k-disk graphs have been widely adopted to construct an MIS first then find out connectors to connect
model wireless ad hoc and sensor networks, in which two all nodes in the MIS. This algorithm takes node degree into
nodes can communicate with each other successfully via two- consideration and therefore has higher message overhead but
way handshake (DATA-ACK) if they reside in each other's achieves better performance compared to the first one.
transmission range. Since their power capacity differs or for
the reason of interference mitigation, nodes may have different This paper is organized as follows. We first introduce the
transmission ranges, resulting in disks with different radii, preliminary definitions in Section II. Related works are also

In this paper we study the problem of constructing min- surveyed in this section. Then we derive the size relationship
imum connected dominating sets (MCDS) in geometric k- between maximal independent set and minimum connected
disk graphs. One significant application of this problem is the dominating set in geometric k-disk graphs in Section III.
virtual backbone construction in ad hoc and sensor networks, The two distributed approximation algorithms are reported in
where a virtue backbone is utilized to decrease the protocol sections IV and V, respectively. We conclude this paper with
overhead [1], [2]. Computing a MCDS in Gk(V, E) is a a brief summary and a brief discussion on future research in
NP-hard problem since its special case, MCDS in unit-disk Section VI.



II. PRELIMINARIES AND RELATED WORK algorithms in [9], [11], [12], which connect a MIS with a

A. Preliminaries spanning tree, is improved from 8 to 7.8. Li et al. [ 13] designed
Given any graph G = (V, E), two vertices are independent the algorithm of connecting an MIS with a Steiner tree, andachieved a performance ratio of 5.8 + In4. Note that all the

if they are not neighbors. For V u, v G V, hop_count(u, v) above-mentioned works require a MIS satisfying the follwing
is the number of edges (hops) in the shortest path fromv) property: any subset of the MIS is two-hop away from its1} is the one-hop (close) neighbor set of v; N 2 [v] = complementary. The construction of such a MIS relies on a{u hop_count(u, v) _ 2} is the two-hop (close) neighbor spanning tree. The works by Wan et al. [14] and Cheng etset of h. al. [2] removed this restriction with a tradeoff of a largerAn independent neighbor set of v, denoted by N(v), i performance ratio. MCDS in unit-disk graphs has a polynomialtime approximation scheme [15], which means that MCDS ina subset of N [v] such that any pair of vertices in Ni (v) are
independent. An independent set S of G is a subset of V such unit-disk graphs can be approximated to any degree.The research reported in this paper is motivated by [2]
that for V u, v E S, (u, v) V E. S is maximal if any vertex and [4] and we target the geometric k-disk graphs. To our
no t in S has a neighbor in S . n o wledg e,d the r e t te i th is r a ph s. t i n

A dominating set D of G is a subset of V such that each knowledge, the results reported in this paper are the best in
node not in D has at least one neighbor in D. For any edge
(u, v), if u G D and v V D, then u is v's dominator and v is
u's dominatee. If both u and v are E D, one can specify the III. MAXIMAL INDEPENDENT SET AND MINIMUM
other as its dominator. An optimal dominating set has mini- CONNECTED DOMINATING SET IN GEOMETRIC k-DISK
mum cardinality. If the induced subgraph of D is connected, GRAPHS
then D is a connected dominating set (CDS). Among all Given Gk(V,E), a geometric k-disk graph as defined in
CDSs of graph G, the one with minimum cardinality is called Sec I, let Nl(x) be the set of independent neighbors of x for
a minimum connected dominating set (MCDS). A maximal for Vx E V. We have
independent set is also a dominating set. Lemma 3.1: INI(x)l < 5+9r ink

Proof.- Denote by rx the radius of x. Let a be a real
B. Related Work number such that 0 < a < '. For easier elaboration we

To our best knowledge, Thai et al. [4] was the first and assume that 2' is a constant and we set a = We will
the only one to tackle the problem of MCDS construction in explain at the end of the proof that this a value is a reasonable
geometric k-disk graphs. In that work, the authors proved that choice. Note that the whole proof procedure only requires
that any node can have at most 10L (" number of inde- < r <

pendent neighbors when k > 1. This result is problematic as We first draw circles centered at x with radii (2cosa)',
when k is a little more than 1, it yields 0, which is impossible. 2 cos a, (2 cos a) 2 , .. , (2 cosa) n - 1 , and (2 cos a)'-, respec-
Thai et al. [4] also proposed three centralized approximation tively, such that (2cosa)' - 1 < rx and (2cosa)" > rx.
algorithms together with their performance analysis. Our work Therefore n, I (2' a) By this way the disk of x
is motivated by [4] but improves [4]. In addition, we focus on is partitioned into n, annuluses plus the unit-radius circle
the design of distributed algorithms for the geometric k-disk centered at x, as shown in Fig. 1. We claim that each annulus
graphs. contains at most 2 - 1 nodes in NI(x).

There exist abundant works investigating the problem of Consider any annulus H, as shown in Fig. l(a). Let u and
MCDS construction in unit-disk graphs and general graphs. v be two independent neighbors of x in H. We must have
For a recent literature survey, we refer the readers to [1] and Zuxv > a. To prove this claim, we draw two lines xb and xd
the references therein. In the following we briefly summarize crossing the inner and outer sides of 71 at a and b, and c and d,
several major works. respectively, such that u resides in xb and Zbxd = a. Since

The NP-Completeness of MCDS in general graphs was I = O = 2cosa, we have IcbI = ladl = Ixal = ixcl.
studied in [5]. The MCDS remains NP-hard for unit-disk Therefore JyxJ > JybJ holds true for any point y in the closed
graphs [3]. In 1998, Guha and Khuller proposed two CDS con- area abdc of H, which means all nodes in the closed area of
struction strategies in their seminar work [6]. These two greedy abdc in 7- are neighbors of u. Thus v must be out of the area
heuristic algorithms have performance ratios 2(1 + H(A)), of abdc, and therefore Zuxv > a. Based on this argument, we
where A the largest node degree and H is the harmonic conclude that there exist at most 11 -1 number of independent
function, and 3 + In A, respectively. Ruan et al. [7] proposed a neighbors of x in the annulus -/.o
one-step greedy approximation algorithm with a performance Since there are n, number of annuluses, the total number
ratio of 2 + In A. Wu and Li 181 proposed the first localized of independent neighbors of x in all the annuluses is at most
algorithm for MCDS in general graphs but their algorithm ns. -1] = r n 1 [ -] Lea In(2coscv)J "[-2- - 1]. Let f(a) [n(2 ].a

does not have a bounded performance guarantee [9]. f2l - 1]. When 0 < a < Z, f(a) yields a minimum when a
For unit-disk graphs, Wu et al. [10] studied the size relation- is close to '.

ship between MCDS and MIS and reported that the size of any Now consider the unit disk D centered at x, as shown in
MIS is at most 3.8 times of that of MCDS plus a constant 1.2. Fig. 1(b). Let u and v be two independent neighbors of x.
With this result, the performance ratio for the approximation Then we must have Zuxv > 60', since otherwise, 1uvI <i
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max{luxl, Ivxll < 1, contradicting the independence of u and
v. Therefore there exist at most 5 independent neighbors of x
at D.

Considering the unit-disk area and all the annulus areas, we9 I nr 1. _ Ik
have INI(x)l < 5 + 9 nn 2cos())/ <T5.7 nk, 5 + 9) V

ru v

ey y
,Fig. 2. If u and v are neighbors in Gk(V, E) and r,, > r_, then Zxvy >

2 r
U 3

U 60 V tween a minimum connecting dominating set and any maximal
independent set of the same Gk.

Let S C V be any MIS of Gk(V, E). Denote by opt the
size of any MCDS in G. We have

Theorem 3.1: ISI < (7nk + 4)opt + 2 nk + 1.
(b) Proof." Let C be any MCDS of Gk(V, E). Compute a

spanning tree T traversing all nodes in C. Let ul, u 2, .-. , Uopt
be the preorder-tree-walk of 7. Then from Lemma 3.1 it1 will
dominate at most 5 + 9ntk number of independent nodes in

Fig. I. (a) If u and v are independent neighbors in the annulus h, then S. Based on Lemma 3.2, each ui, where i = 2,3,... opt,
Zuxv > a. Note that only part of 7 is shown. (b) When u and v are
independent neighbors in the unit-disk area of x, Zuxv > 60'. will dominate at most 4 + 7 nk number of independent nodes

in S that are not dominated by any node in uj where j < i.
Ink b Since C is a connected dominating set, each node in S will

In the following analysis, we denote ,k. be either in C, or dominated by one node in C. Therefore
Now we have derived the upper bound of the number of ISI < 5+9nk+(opt-1)(4+7nk) = (4 + 7 nk)opt+ 2nk+.
independent neighbors for any node x in Gk(V, E), which E
is 5 + 9 nk. In the next, we are going to answer the following In the following sections, we propose two distributed CDS
question: how many independent neighbors a pair of neigh- algorithms and analyze their performance theoretically. Note
boring nodes may have? The following lemma answers this that for both algorithms, we assume that each node has a
question by giving an upper bound.quesionby gvin anuppe bond.unique id, known to its neighbors within two hops away.

Lemma 3.2: Let u and v be any pair of neighboring nodes
in Gk(V, E), i.e. u E V, v E V, and (u, v) e E. Then the IV. ALGORITHM I: GROWING A CDS FROM A LEADER
total number of independent neighbors of u and v is at most Algorithm I starts from a leader node. For simplicity, we
9 + 16nk. assume that the node with the smallest id is the leader. We

Proof" Let r. and r, be the radii of u and v, respectively, associate a color with each node. Strictly speaking, color is
Without loss of generality, we assume ru > r. Assume the not a parameter in our algorithm. It is retained in the algorithm
disks of u and v intersect at x and y, as illustrated in Fig. 2. description for the purpose of easier elaboration.
We have lux = ru and Ivxj = r,. Since luxl >_ Ivxl and Initially all nodes are colored white. In the first step, leader
luxi> luvi, we have Zuvx > . Similarly we have zUVY > u colors itself black and becomes a dominator. Then all nodesTherefore Zxvy > - Thus the area in v's disk that could in N 1 [u] \ {u} color themselves gray and become dominatees,
cover nodes in N (v) but not in N 1 (u) is the right sector - and all nodes in N 2 [u] \ N 1 [u] color themselves yellow and
of v with an angle at most - v n l odsi 2u j[]clrtesevsylo.n

f wbecome active. In the next step, neighboring active nodes
Now we can take the same procedure as that in Lemma 3.1 compete with each other and the winners, whose ids are the

by drawing circles centered at v with radii 1, 2 cos a, - .. Since smallest among their yellow neighbors, become dominators.
the angle at v formed by any two independent neighbors of Each of the winners also specifies its own dominator, the gray
v in the same annulus is larger than a, the overlapping area neighbor whose id is the smallest among all gray neighbors.
of the right sector s and all the annuluses can contain at This step will repeat until nodes are either gray (dominatees)
most ([-5-])n k = 7 nk number of independent neighbors of or black (dominators). All black nodes form a CDS.
v. With a similar argument, the intersection of the unit-disk Note that the procedure described above grows a CDS from
centered at v and the right sector ji"v may contain at most the leader. In the first step, only the leader is included in the

Am,
±_ = 4 independent neighbors. Therefore the total number of CDS. In each of the other steps, two nodes are included in the

in dependent neighbors of u and v is at most 9 + 16 nk. U CDS, with one turning color from yellow and one from grey.
Lemma 3.2 indicates that a neighbor can bring in at most Theorem 4.1: The size of the CDS generated by Algorithm

4 + 7nk number of independent nodes. This motivates us to I is at most (14nk + 8)opt + 4nk + 1, where opt is the size
prove the following lemma addressing the size relationship be- of the minimum connected dominating set.
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Proof We can partition all the dominators into two sets: A
and B. Set A contains all vertices with color changing from
white to black directly and B contains all vertices with color Color-white
changing from white to gray then to black. The first step adds - - "
the leader to A. Each of the other steps adds one node to A SI
and one node to B. Thus JAI = IBI + 1. Color-gra - Color-yello

Now we claim that A is an independent set. This is 7,
obvious since each vertex u in A is colored black from S3
white or yellow. This means u has no black neighbors Color=black
because each neighbor of a black node has gray color.
From Lemma 3.1, JAI < (7 nk + 4)opt + 2nk + 1. Thus
JAI + JBI <_ (14nk + 8)opt + 4nk + 1. U Fig. 3. The state transition diagram of Algorithm I for any node u.

Remarks: (i) Algorithm I grows a tree from the leader in a
step-by-step fashion. At any time, all the inner nodes of the State So is the initial state. A node in this state has white
tree are colored black while all the leaf nodes are colored gray. color. All nodes are in So at the beginning of the algorithm.
In the first step, the leader and all of its neighbors are added State S is the dominatee state. A node in this state is a
to the tree. In every other step, a leaf node v and one of its dominatee and has gray color. State S 2 is the active state.
yellow neighbors u are colored black (added to the tree). All A node in this state has at least one neighbor in S 1 and has
the white/yellow neighbors of u and v are colored gray and yellow color. An active node is a candidate dominator in next
added to the tree as leaves. This algorithm terminates when no step. State S3 is the dominator state. A node in this state
white/yellow node left. All the black nodes form the CDS. (ii) is a dominator and has black color. All nodes in S3 form
If we use node cost instead of id as the criteria for dominator the connected dominating set. Each node u in state So or S 2

selection, Algorithm I is cost-aware. For example, if the cost also maintain a parameter W' to node all yellow neighbors.
is the inverse of the residual power of each node, the output Initially W,, = 0. If u has the smallest id compared to its
CDS has higher power capacity; if the cost is the incoming yellow neighbors in Wu, u will become a dominator in the
bitrate (load), the output CDS has lower load; if the cost is the next step. The transition steps are detailed below.
inverse of the node velocity, the induced graph by the output 1) u is in state So. If u is the leader, then dornu =

CDS has a more stable topology. u, ranku = 0. u will broadcast message <

dominator(u, u, 0) > and go to state S 3 .

A. Distributed Implementation 2) u is in state So or S2 and receives message <
dominator(v, d, 1) > from neighbor v. If d is a neigh-

Each node 2u maintains the following parameters: domu, bor of u, then dotnu = d, ranku = 1; otherwise,
which is the dominator, or the parent of the node in the danu = v, ranku = 1 + 1. u will broadcast message
tree; ranku, which defines a relative relationship among < dominatee(u, domu,,ranku) > and go to St.
neighboring nodes1 ; childrenu, which contains all dominated 3) u is in state So and receives message
nodes, or the children of the node in the tree. These parameters < dotninatee(v,d,l) > from neighbor v. u will
are updated by the exchange of the following 3 messages. broadcast message < active(u) > and go to state S2.

< dominator(u, dornu, ranku) > - node u, whose dom- u temporarily sets dom, to v and rank, to I + 1. If v
inator is doan and whose rank is rank,,, broadcasts this is in W,,, it will be removed.
message to all neighbors. u is a dominator. 4) u is in state S2  and receives message
< doininatee(u, domu,rank) > - node u, whose dom- < dominatee(v,d,l) >. Remove v from W,, if

inator is domu and whose rank is ranku, broadcasts this it is in W,. If id, < iddo... then domu = v and
message to all neighbors. u is a dominatee. rank. = 1 + 1. u will go back to S2.

< active(u) > - node u broadcasts this message to all of 5) u is in state So or 82 and receives message <
its white/yellow neighbors when it becomes active. A white active(v) >. Wu = W0 U {v}. u remains in the original
node becomes active after it receives the first < dominatee > state.
message from one of its neighbors. 6) u is in state 82 and there is no broadcasting in N 1 [u]

The state transition diagram of Algorithm I is given in for To time unit (which is a design constant). If it has
Figure 3. Each node u runs a copy of the algorithm. At any smallest id compared with all nodes in W,,, it will
time, u can be in one of the 4 states: SO, S1, S2, and 83. The broadcast message < dominator(u, dotn,, rank0 ,) >
directed arc from Si to Sj, where i,j = 0,1,2,3, represents and go to 83.
the transition from state Si to state Sj. Each transition is 7) u is in state S, and receives message
labeled by a number. These transitions will be explained latter. < dominator(v, d, I) > from v. If d = u, u will

broadcast message < dominator(u, dom0 , rank0 ) >
and go to state 83.

'In Algorithm I, rank is the level of the node in the tree 8) u is in state S3. If u finds that none of its neighbors
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takes u as the dominator, it will broadcast message nodes 2, 4, and 6 broadcast messages < active(2) >,
dominatee(u,domu,ranku) and go to state S1. < active(4) >, and < active(6) >, respectively, and go

to state S2. After this step, the tree contains inner node
Remarks: (i) The leader can be elected by the distributed {0} and leaves {1,5}.
leader election algorithm proposed in [16]. (ii) The parameter 2. After the first step, W 2 , W 6 , W 4 contain {6}, {2, 4},
To is used to force the start of next step in nearby environment and {6}, respectively. Therefore node 2 and 4 will
be strictly after the end of the current step. To is a design become dominators since they have the smallest id
parameter, which could be predetermined via simulation. (iii) compared with their yellow neighbors in lV 2 and W,,
We assume the message broadcast is reliable. For reliable respectively. Thus nodes 2 and 4 broadcast message
broadcasting, we refer the readers to [ 17], [18]. (iv) When u re- < dominator(2, 1,2) > and < dominator(4,5,2) >,
ceives a message < dominator(v, u, 1) or dominatee(v, u, l), respectively, and go to state 83. Here node 2 selects
u will put v into its children list if v is not there. (v) In state node 1 as its dominator because node I has a
S 1 , a gray node will select the lowest rank black node as smaller id compared with node 5. After receiving
its dominator. This can help to optimize the generated CDS. < dominator(2, 1,2) >, node 1 broadcasts message
For example, if a black node u's dominated children are also < dominator(l, 0, 1) > and goes to state 83; similarly
dominated by dom(u), then u can become a dominatee and node 5 broadcasts message < dominator(5, 0, 1) > and
go to state S 1 . (vi) Step 8 is an optimization to remove those goes to state 83. After receiving < dominator(2, 1, 2) >
dominators with no dominatees. and/or < dominator(4,5,2) > and/or

Theorem 4.2. Algorithm I has a message complexity 0(n), < dominator(5, 0, 1) >, nodes 3 and 6
where n is the total number of vertices, broadcast messages < dominatce(3,2,3) > and
Proof We have 3 types of messages: < dominator >, < dominatee(6, 2, 3) > respectively, and go to state
< domittatee >, and < active >. Each node broadcasts St. After this step, the tree contains inner nodes
each message at most once. Thus the total number of {0, 1,2,4, 5} and leaves {3, 6}.
broadcastings is at most 0(n). U 3. Node 4 has no dominatee and therefor go to state S1 to

Note that the above message complexity analysis does not {O, 1, 2, 5} and leaves {3, 4, 6}, as shown in Fig. 5.
consider the leader election, whose message complexity is
Q(n log n) [14].

B. An example

Now we use an example to demonstrate how to apply
Algorithm I to compute a connected dominating set. The given
geometric disk graph G = (V, E) is shown in Figure 4. There 0
are 6 nodes and II links. Host 0 is the leader. 5

Fig. 5. The computed connected dominating set contains nodes {0, 1,2,5).
5 The optimal solution contains {5, 6}.

V. ALGORITHM 11: CONNECTING A MAXIMAL

Fig. 4. An example. Unit-disk graph G contains 9 nodes and 12 links. INDEPENDENT SET

Algorithm I could be improved if node degree is taken into
For this example, 3 steps are needed to compute the consideration. In Algorithm II, instead of growing a CDS from

connected dominated set. They are described in detail below, a leader, we compute a MIS first, then connect all nodes in
0. Initially all nodes are in state So. the MIS. Accordingly Algorithm II contains two phases.
I. Host 0 broadcasts message < dominator(0, 0, 0) > In Algorithm II, each node needs to maintain two more

and goes to state 83. After receiving < parameters: the effective degree d*, which is defined to be the
dominator(0, 0, 0) >, nodes 1 and 5 broadcast messages number of white/yellow neighbors, and the black degree d*,
< dominatee(1, 0, 1) > and < dominatee(5, 0, 1) >, which is used by a gray node to record the number of black
respectively, and go to state S1. After receiving neighbors with a higher rank. The distributed implementation
< dorninatee(1, 0, 1) > and/or < dominatee(5, 0, 1) >, of algorithm II is detailed in the following subsection.
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A. Distributed Implementation 7) u is in state S 1. u keeps track of the number of higher
rank black neighbors (number of higher rank dominators

The state transition diagram for the first phase is shown in in Na deno b of W he all o ingorsFigue 6.in Ni [u], denoted by d*). When all of its neighbors
Figureare either in or in 3, u broadcasts the messagear esintaei, or inS3,a ou ebrodaynei the message

< blackdegree(u,d*) >.

So 8) ut is in state S3. it keeps track of the gray neighbor with a
5 lower rank whose (d*, id) is the biggest, in lexicographic

7 order. This is u's candidate dominator in phase 2.

2 Remarks: (i) Phase 1 generates many stars. Each star consists
of one black node, which serves as the center, and many gray
nodes dominated by the center. Each gray node in a star sets

6-- its dom, to the center. All nodes in a star have the same rank,
S3 4.5 which is also the rank of the star. The dominator of a gray

Color=black node is its first black neighbor. In other words, a gray node
u resides in the star centered at the black neighbor which
is the first to go to state S3. (ii) The star centered at the
leader has rank 0. The rank of any other star s centered at

Fig. 6. The state transition diagram for the first phase oflAlgorithm It.for u is one plus the highest rank of u's gray neighbors not
any node. in s. (iii) We can also understand phase 1 in the following

way: phase 1 contains multiple steps. Each step generates a

Initially all nodes are colored white. During the execution star. At each step except the first one, an active node (in S 2)
of phase 1, each white/yellow node keeps track of its effective u with maximum effective degree compared with all of its

degree d*, which will be updated when a neighbor changes active yellow neighbors is colored black. All of u's 1-hop

color. To keep the degree information up-to-date, we need whitelyellow neighbors (in state S, or S2) are colored gray.
a new message < degree (u, d*) >, by which u tells its All of u's 2-hop white neighbors (in state So) will go to state
neighbors that its effective degree is d*. We also need the S2. (iv) < degree > message is used to announce the number
message < blackdegre.e(u, d*) >, which is broadcasted by u, of white/yellow neighbors of node u to all of u's white/yellow
a dominatee. The "rank" information will be used in phase 2 neighbors. With this information, a dominator will be elected

to connect all members in the generated MIS. The transitions in next step. < blackdegree > message is used by gray node
are explained below. Initially d* = d, where d is the degree u to announce the number of black neighbors whose rank iswhose xpla is IN i [u] I - 1. higher than u to all higher rank black neighbors of u. With

this information, a black node v can select a gray neighbor1) u is the leader and is in state So. u will broadcast with a lower rank than v that connects to many stars.
message < dominator(u, u, 0) > to its neighbors and After phase 1, each node is either in state S or state S3.
go to state S3. A node in state Si has a dominator in S3 while a node in

2) it is in state So or S2 and receives S3 does not have any dominator (except the leader). Phase 2
< dominator(v, x, l) > from neighbor v. Here will designate a dominator for each black node u (in S3). u's
x is either the leader or null. u will broadcast dominator will be the gray node v in Si such that rank(v) <
< dominatee(u, v, 1) > and go to Si. rank(u) and v has the largest (d*,id) among all lower-ranked

3) it is in state So and receives the message < gray neighbors of b. The transition diagram for phase 2 is

doTninatee(v, d, 1) >. u will update d* to d* - 1, shown in Figure 7. We elaborate the details below.

removes v from W if v G Wu, set ranku to l + 1,

broadcast < active(u) >, and then go to S2 .
4) In S 2 , u will keep track of all < dominatee(v, d, l) > Si -5-

messages broadcasted in N 1 [u] and remove those dom-
inatees in W. u updates d* and rank, accordingly
(ranku = 1 + max,{l}). If there is no broadcasting
in N1 [u] for To time unit, u will broadcast message Fig. 7. The state transition diagram for the second phase of Algorithm tl
< degree(u, d*) > if d* is changed after last broad- for each node.

casting of < degree > message.
5) it is in state So or S 2 . If u receives message <

active(v) >, then W0 = Wu U {v}; if u receives 1) After a black node u (in S3) received < blackdegree >
message < degree(v, d*) >, u updates the local record from all of its lower-ranked gray neighbors, it broadcasts
of v's effective degree. message < dominator(u, dom0, rank,,) >, where

6) u is in state S2 and there is no broadcasting in darn0 is the lower-ranked gray neighbor with highest
Nl [u] for To time unit. If u has biggest (d*, id) (d*,id). Here rank, was set in phase 1.
compared with all nodes in W, u will broadcast < 2) After a gray node u (in SI) received
dominator(u, null, ranku) > and go to state S3 . < dominator(v,u,r,) > from v, it will broadcast
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< dominator(u, dom,,ranku) > and go to state S3. all these broadcastings, nodes 2, 4, and 6 broadcast
Here the dom, and ranku parameters for u were set messages < degree(2,2) >, < degree(4, 1) >, and
in phase 1. < degree(6, 3) >, respectively. This step generates the

3) A gray node u in S will keep track of the black star (0, {1,5}).
neighbor v with the lowest rank by listening to all < 2) Nodes 2, 4, 6 maintain the list of active neighbors
dominator > broadcastings. After all black neighbors and the corresponding effective degrees, which are
(generated in phase 1) determine their dominators, u will {(3, 6)}, {(2, 2), (1, 4)}, and {(3, 6)}, respectively. The
broadcast message < dominatee(u, v, rank,) > if v is winner of the competition is node 6 since it has the
different than its original dominator domu. Note that highest (d*,id), thus node 6 broadcasts message <
here u will be a dominatee after phase 2. dominator(6, null, 1) > and go to state 83. After

4) u is in state S3 but no gray node selects u receiving < dominator(6, null, 1) >, nodes 2, 3,
as the dominator, u will broadcast message < and 4 broadcast messages < dominatee(2,6,1) >,
dominatee(u,domu,ranku) > and go to state S1. < dominatee(3,6,1) >, and < dominatee(4,6,1 >,

Remarks: (i) Phase 2 assigns a dominator v to the center u of respectively, and go to state S1. Then all nodes 1, 2, 3,
each star generated in phase 1 except the star centered at the 4, and 5 broadcast messages < blackdegree(5, 1) >,
leader. v is a gray node satisfying the following conditions: v < blackdegree(1, 1) >, < blackdegree(2, 0) >, <
is located in a star with a rank lower than u and v is adjacent to blackdegree(3, O) >, and < blackdegree(4, O) >,
maximum number of stars with a higher rank than v. (ii) After respectively. This step generates the star (6, {2, 3, 4}).
phase 2, the dominator of a gray node u is always the black After phase 1, nodes {0, 6} are in state 83 and all other
neighbor with the lowest rank. (iii) Phase 2 is a local process nodes are in state S1. Phase 2 contains the following step:
which happens among adjacent stars with different ranks. After 3. After receiving < blackdegree > message from node
a black node u received < blackdegree > from all of its 5, the only lower-ranked gray neighbor, node 6 broad-
lower-ranked gray neighbors, it can select its dominator and casts message < dominator(6, 5,1) >. After receiving
broadcast message < dominator(u, dom,, ranku) >. This < dominator(6, 5,1) >, node 5 broadcasts message
means a black node can initiate phase 2 immediately after all < dominator(5,0,0) > and goes to state 83. After
necessary information is available. There is no explicit start receiving < dominator(5, 0, 0) >, nodes 2 and 4
time for phase 2. Phase 2 is used to connect all stars. will selects node 5 as its dominator. The algorithm

Remarks: (i) There are many similarities between Algorithm terminates. The resultant CDS contains nodes {0, 5, 6).
I and II. Both algorithms grow a maximal independent set
(MIS) from the leader (see Theorem 4.1 and Lemma 5.1). (ii) C. Performance analysis
The major differences are: (a) The criteria to decide whether
an active node can be elected to be a member of the MIS In this subsection, we study the performance of Algorithm
is different. In Algorithm I, an active node with a smallest id II.
compared with all of its active neighbors will be added into the Lemma 5.1: After phase 1, all nodes in state S3 form a
MIS. In Algorithm II, an active node with maximum effective MIS. In other words, the centers of all stars form a MIS.
degree compared with all of its active neighbors will be added Proof A node is colored black only from white. No two
into the MIS. (b) The time when the dominators of the nodes white neighboring nodes could be colored black at the same
in the MIS are determined is different. Algorithm I assigns a time since they must have different (d*, id). Whenever a node
dominator to each node in the MIS when the node satisfies is colored black, all of its neighbors are colored gray. Once a
the condition in (a); Algorithm II delays the determination of node is colored gray, it remains in color gray during Phase 1. E
the dominator to phase 2. Thus Algorithm II can pick the gray
node that connects to a larger number of elements in MIS. Lemma 5.2: Phase 2 generates a connected dominating set.

Proof Note that phase 1 generates many stars whose

B. An example centers form a MIS. Two stars are adjacent if a gray node in
one star is a neighbor of the center of the other star. Since

Now we show how to apply Algorithm II to the example the input graph is connected, a star except the lowest-ranked
in subsection IV-B. Initially all nodes are in state So. Phase 1 one (the one with the leader) centered at the leader has at
contains 2 steps: least one adjacent star. Each star has a rank which is higher

1) Host 0 broadcasts message < dominator(0, 0,0) > than the rank of its adjacent stars. Phase 2 connects a star to
and goes to state S3. After receiving a lower-ranked adjacent star by turning a gray vertex in the
< dominator(0, 0, 0) >, nodes 1 and 5 lower-ranked star to black. Thus after phase 2, each black
broadcast messages < dominatee(1, 0, 0) > and vertex (the center of a star) has a path consisting of only
< dominatee(5, 0, 0) >, respectively, and go to black nodes to the leader. Therefore all these black vertices
state S1. After receiving < dominatee(1, 0,0) > form a connected dominating set. U
and/or < dominatee(5,0,0) >, nodes 2, 4, and 6
broadcast messages < active(2) >, < active(4) >, and Lemma 5.3: In phase 2, the gray node with maximum
< active(6) >, respectively, and go to state S2. After (d*, id) will connect to d* number of lower-ranked stars.



Proof. Let u be the gray node with maximum (d;, id). in geometric k-disk graphs. Note that a polynomial time
Phase 1 ensures that u belongs to the star whose center is the approximation scheme (PTAS) exists for unit-disk graphs [15]
first black neighbor of u. For all other black neighbors (centers but whether a PTAS exists or not for the general geometric
of some stars) of u, their ranks must be greater than that of u k-disk graphs is still open. This is another problem we intend
since a black node in phase I always assigns its rank to be one to target in the future.
plus the rank of its highest rank dominatee neighbor. Thus all
these d6 nodes will select u as their dominators in phase 2. In REFERENCES
other words, u connects to d* number of lower-ranked stars. M. D. 1. Blum and X. Cheng, Handbook of Combinatorial Optimiza-

tion. Kluwer Academic Publisher, 2004, ch. Applications of Connected
Theorem 5.1: The connected dominating set generated in Dominating Sets in Wireless Networks, pp. 329-369.

Algorithm II has a size at most (14 nk + 8)opt + 4 k - 1, [21 X. Cheng, M. Ding, D. H. Du, and X. Jia, "Virtual backbone constructionin multihop ad hoc wireless networks," Wireless Communications and
where opt is the size of any optimal MCDS for the given Mobile Computing, vol. 6, pp. 183-190, 2006.
instance. [3] B. N. Clark, C. J. Colbour, and D. S. Johnson, "Unit disk graphs,"

Proof. From Lemma 5.1, phase 1 computes a MIS. L.et A Discrete Mathematics, vol. 86, pp. 165-177, 1990.[4] M. T. Thai, E Wang, D. Liu, S. Zhu, and D.-Z. Du, "Connectedbe this MIS with a size JAI. From Theorem 3.1, JAI _< (7nk + dominating sets in wireless networks with different transmission ranges,'
4)opt + 2 nk + 1. Note that in phase 2, at most JAI - 1 nodes IEEE Transactions on Mobile Computing, vol. 6, no. 7, pp. 721-730,

2007.in state S1 will go to state S3 . Now we consider two cases [51 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
here. to teh Theory of NP-Completeness. W. H. Freeman, 1979.

First, if there exist a gray vertice with d* > 2 at the [6] S. Guha and S. Khuller, "Approximation algorithms for connected
dominating sets," Algorithmica, vol. 20, no. 4, pp. 374-387, 1998.beginning of phase 2, from Lemma 5.3, the gray vertex i with [7] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, "A greedy

maximum (d*, id) will connect db* stars to the higher rank star approximation for minimum connected dominating sets," Theor Comput.
it resides in phase 2. Therefor the number of nodes changing Sci., vol. 329, no. 1-3, pp. 325-330, 2004.
state from S1 to S3 in phase 2 is at most JAI - 2. Thus the [8] J. Wu and H. Li, "On calculating connected dominating set for efficient

routing in ad hoc wireless networks," in DIALM '99: Proceedings oftotal number of nodes in state S3 is at most JAI + JAI - 2 < the 3rd international workshop on Discrete algorithms and methods for

(7nk + 4 )opt + 2 nk + 1 + (7nk + 4)opt + 2 nk + 1 - 2 < mobile computing and communications. New York, NY, USA: ACM,
-- 1999, pp. 7-14.(14n,k + 8)opt + 4nk - I. [9] P-J. Wan, K. M. Alzoubi, and 0. Frieder, "Distributed construction of

Secondly, if all gray vertices have d* < 1 at the beginning connected dominating set in wireless ad hoc networks," in Twenty-First
of phase 2, then the number of nodes changing state from Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM 2002), 2002, pp. 1597-1604.S, to S 3 in phase 2 is exactly JAI - 1 Since the dominator [101 W. Wu, H. Do, X. Jia, Y. Li, and S. C.-H. Huang, "Minimum connected
of any gray vertex u is its first black neighbor, and all other dominating sets and maximal independent sets in unit disk graphs"
black neighbors of u have higher rank than u, thus the total Theor Comput. Sci., vol. 352, no. 1, pp. 1-7, 2006.
number of black neighbors u has is at most 2. In other [11] M. Cardei, M. X. Cheng, X. Cheng, and D.-Z. Du, "Connected dom-ination in ad hoc wireless networks," in International Conference on
words, any node in an optimal MCDS is either in A or Computer Science and Informatics (CS&I 2002), 2002, pp. 251-255.
adjacent to at most 2 vertices in A and any vertex in A is [12] K. Alzoubi, P.-. Wan, and 0. Frieder, "New distributed algorithm for

connected dominating set in wireless ad hoc networks," in HICSS '02:dominated by a vertex in the MCDS. Therefor in this case, Proceedings of the 35th Annual Hawaii International Conference on

IAI < 2 -opt. Thus the total number of black nodes will be System Sciences (HICSS'02)-Volume 9. Washington, DC, USA: IEEE
2 opt + 2 opt - 1 < 4 • opt. Computer Society, 2002, p. 297.

[13] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, "On
greedy construction of connected dominating sets in wireless networks:

Theorem 5.2: Algorithm II has message complexity Research articles," Wirel. Commun. Mob. Comput., vol. 5, no. 8, pp.
O(n A), where n is the total number of vertices and A is the 927-932, 2005.

node degree. [14] K. M. Alzoubi, P-J. Wan, and 0. Frieder, "Message-optimal connectedmaximum ndominating sets in mobile ad hoc networks," in MobiHoc '02: Pro-
Proof. In Algorithm II, the message complexity is ceedings of the 3rd ACM international symposium on Mobile ad hoc

dominated by the < degree > messages broadcasted by networking & computing. New York, NY, USA: ACM, 2002, pp. 157-
164.white vertices in S2 in phase 1 since each node broadcasts [15] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Do, "A polynomial-time

each of the other messages at most twice. Therefore the approximation scheme for the minimum-connected dominating set in ad
message complexity is O(nA). hoc wireless networks," Networks, vol. 42, no. 4, pp. 202-208, 2003.

[16] I. Cidon and 0. Mokryn, "Propagation and leader election in a multihop
broadcast environment," in DISC '98: Proceedings of the 12th Interna-
tional Symposium on Distributed Computing. London, UK: Springer-
Verlag, 1998, pp. 104-118.

VI. CONCLUSION [17] L. Subramanian, R. H. Katz, V. Roth, S. Shenker, and
1. Stoica, "Reliable broadcast in unknown fixed-identityIn this paper, we studied the problem of constructing mi- networks," EECS Department, University of California, Berkeley,

imum connected dominating set in geometric k-disk graphs. Tech. Rep. UCB/CSD-04-1358, 2004. [Online]. Available:
We first derived the upper bound of the size of any maximal http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/6505.html

[181 C.-Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya, "Reliable broadcast inindependent set compared to that of a MCDS. Then we pro- radio networks: the bounded collision case," in PODC '06: Proceedings
posed two distributed approximation algorithms and studied of the twenty-fifth annual ACM symposium on Principles of distributed

their performance theoretically. computing. New York, NY, USA: ACM, 2006, pp. 258-264.

As a future research, we intend to improve the upper
bound and design better approximation algorithms for MCDS


